
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN EFFECTIVENESS STUDY FOR

PRIORITIZATION ALGORITHMS IN A
COMMUNICATIONS NODE MODEL FOR THE

COPERNICUS TACTICAL DATA INFORMATION
EXCHANGE SYSTEM (TADIXS).

by

Christopher H. Halton

September 1997

Principal Advisor:
Associate Advisor:

Michael G. Sovereign
Orrin E. Marvel

Approved for public release; distribution is unlimited.

19980212 047
OTIC QSM3T7 W^FEyJUED ^

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

9,theongand m».ntnni«g thed»uneeded.»^«^«'^»^^^'^.^^'S^S^J^SS^WB-Direcioritefor inf5rm»t.onOper.tior» .nd Report», 1215 Jefferson

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September, 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
AN EFFECTIVENESS STUDY FOR PRIORITIZATION ALGORITHMS IN
A COMMUNICATIONS NODE MODEL FOR THE COPERNICUS TACTICAL
DATA INFORMATION EXCHANGE SYSTEM (TADIXS) .
6. AUTHOR(S)

Halton, Christopher H.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11ThrvilwIAeVxpreElsed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The U.S. Navy has published its vision of the future in Command, Control,

Communications, Computers, and Intelligence (C4I): Copernicus. Copernicus
takes advantage of new technology and attempts to answer the demand for larger
amounts of more timely information. Despite the advances in technology, new
transmission methods and increased bandwidth, the U.S. Navy still does not have
all the communications throughput that it desires. The author examines message
prioritization algorithms as a way of making more efficient use of scarce
communications resources. Through a simple communications node model and two
algorithms, it is statistically proven that prioritization algorithms can improve
the efficiency of a communication system.

14. SUBJECT TERMS

Copernicus, Tactical Data Information Exchange System
(TADIXS), Algorithms, Prioritization.

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS P.

Unclass:
OF THIS P.AG.E ,

"-ixfied

19. SECURITY CLASSIFICATION
TTOF ABSTRACT , Unclassified

15. NUMBER OF PAGES

142
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-S500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18
298102

XX

Approved for public release; distribution is unlimited.

AN EFFECTIVENESS STUDY FOR PRIORITIZATION ALGORITHMS
IN A COMMUNICATIONS NODE MODEL FOR THE COPERNICUS
TACTICAL DATA INFORMATION EXCHANGE SYSTEM (TADDiS).

Christopher H. Halton
Lieutenant Commander, United States Navy

B.S., University of Idaho, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Joint Command, Control, and Communications)

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author:

Approved by:

Christopher H. Halton

tary^dvii overeign, Primary advisor

Orrin E. Marvel, Associate Advisor

/ cA
Dan C. Boger, unaifpian

Command, Control, and Communications Academic Group

in

IV

ABSTRACT

The U.S. Navy has published its vision of the future in Command,

Control, Communications, Computers and Intelligence (C4I): Copernicus.

Copernicus takes advantage of new technology and attempts to answer the

demand for larger amounts of more timely information. Despite the

advances in technology, new transmission methods and increased bandwidth,

the U.S. Navy still does not have all the communications throughput that it

desires. The author examines message prioritization algorithms as a way of

making more efficient use of scarce communications resources. Through a

simple communication node model and two algorithms, it is statistically

proven that prioritization algorithms can improve the efficiency of a

communication system.

V

VI

TABLE OF CONTENTS

L INTRODUCTION1

A. PURPOSE OF THESIS 1
B. BACKGROUND 1
C. METHODOLOGY 2
D. SUMMARY 2

II. COPERNICUS DESCRIPTION 3

A. COPERNICUS 3
B. JOINT MARITIME COMMUNICATIONS STRATEGY 9
C. DEVELOPMENT OF THESIS II
D. CHAPTER SUMMARY 12

III. COMMUNICATION NODE MODEL DEVELOPMENT. 13

A. MODEL GOALS 13
B. JOB SHOP SCHEDULING 14
C. THE MODEL VERSUS REAL WORLD 16
D. MODEL ASSUMPTIONS 17
E.CODE CHOICE 18
F. CHAPTER SUMMARY 19

IV. COMMUNICATIONS NODE MODEL DESCRIPTION 21

A. MODEL 21
B. PRIORITIZATION ALGORITHMS 22
C. MODEL AND ALGORITHM DRAWBACKS 25
D. CHAPTER SUMMARY 26

V. DATA ANALYSIS 27

A. AVERAGE MESSAGE WAIT TIME COMPARISON 28
B. MESSAGE PRECEDENCE COMPARISONS 28
C. PULL/PULL AND PUSH/PUSH COMPARISONS 30
D. PULL VERSUS PUSH COMPARISONS 31
E. CHAPTER SUMMARY 32

VL CONCLUSION 33

A. RESULTS 33
B. LESSONS LEARNED 33
C. RECOMMENDATIONS FOR FURTHER RESEARCH 33

APPENDIX A: COMMUNICATION NODE MODEL WITH ALGORITHM ONE. 35

APPENDIX B: COMMUNICATION NODE MODEL WITH ALGORITHM TWO 59

APPENDIX C: DATA RESULTS _ 87

A. RUN ONE . .87
B.RUN TWO ZZ"Z'Z&9
C.RUN THREE .Z'".'.Z'.9l
D.RUN FOUR 93

Vll

E. RUNFIVE
F. RUN SIX I
G.RUN SEVEN '
H. RUNEIGHT " ,
I. RUN NINE JQ3

J. FLASH PRECEDENCE COMPARISON 106

K. IMMEDIATE PRECEDENCE COMPARISON 110

L. PRIORITY PRECEDENCE COMPARISON 116

M. ROUTINE PRECEDENCE COMPARISON ZZZZZZZ. 122

LIST OF REFERENCES 129

BIBLIOGRAPHY m

INITIAL DISTRIBUTION LIST. 133

VX1X

I. INTRODUCTION

A. PURPOSE OF THESIS
The purpose of this thesis is to examine whether prioritization

algorithms in a communication node have an effect on the measure of

performance, in this case, average message delay before being transmitted

from the node. Despite advances in technology, new transmission methods

and increased bandwidth, the U.S. Navy does not have all the

communications throughput that it desires. In an age of smaller budgets and

increasing commercial demand for communications frequencies, the U.S.

Navy must use its available resources more efficiently and effectively.

Improving prioritization algorithms is one way of ensuring that the most

important information arrives where it is needed first while less important

inoformation still arrives.

B. BACKGROUND
In 1991, the U.S. Navy published its vision of the future in command,

control, communications, computers and intelligence (C4I): Copernicus.

Copernicus is a change in doctrine and technology that will allow the

transmission of information in forms, methods and rates never before

thought possible. In 1995, the Chief of Naval Operations reiterated that

Copernicus is the Navy's C4I architecture for the future. This architecture

will process all types of data and use many different transmission mediums.

[Copernicus Forward, 1995, p. 1] Message processing and prioritization will

be a vital part of this architecture.

C. METHODOLOGY
In this thesis, a communications node model is built and two different

prioritization algorithms tested. Using measures of performance, the effect of

the change in algorithms is statistically measured.

D. SUMMARY
Chapter II gives an overall description of Copernicus and in particular

TADIXS (Tactical Data Information Exchange System), the main focus for

this thesis in Copernicus. This gives the background for the reader to

understand the basis for the thesis. Chapter III addresses the development

of the model and the choices regarding the model and algorithms made

during the development. Chapter IV describes the model and the two

algorithms in more detail. Chapter V discusses the results of the model runs.

The appendices contain the actual computer code and data analysis results.

II. COPERNICUS DESCRIPTION

A. COPERNICUS
"Naval Command and Control is the warfare function through which a

maritime commander delegates his warfighting responsibilities to

subordinate commanders and their units under his command." [Copernicus

Architecture, 1991, p. 1-1] Since the establishment of Space and Electronic

Warfare (SEW) as a warfare area in 1989, command and control (C2), as

encompassed inside the larger command, control, communications, computers

and intelligence (C4I) technological and organizational system, has assumed

new importance in the maritime warfare arena. The U.S. Navy has

drastically revised its C4I doctrine and technology in response to leaps in

technology, an increasing demand by warfighters for larger amounts of more

timely information and the C2 issues raised by a growing battlespace. The

result ofthat change in doctrine and technology is the system called

Copernicus. Copernicus is the U.S. Navy's architectural and technological

implementation of C4I for the 21st century. [Copernicus Architecture, 1991,

P.M]

1. Concept
Copernicus, as an architecture, represents recognition of a world made

smaller by increased technology, high data rate communications, long range

sensors and weapons. The term Infosphere has been used to describe the

high speed, seamless exchange of data on a global scale. Copernicus is meant

to establish and take advantage of an "Infosphere" with the emphasis being

on correct and timely information for the warfighter. The renewed emphasis

on the warfighter has resulted in three new concepts: 1) User Pull, 2)

Producer Push and 3) Virtual Circuits.

User pull is a new concept in which the user of information (the

warfighter) will pull the information he needs from the infosphere. This

concept, made conceivable by new technology, is the direct reaction to

information overload at the warfighter level. With current communication

systems, there is limited ability to separate critical sensor and operational

traffic from mission support or administrative traffic. In addition, multiple

source information as well as multiple routing schemes lead to repetitive

information, overtaxed communication resources, interoperability, and

security issues. [Rand, 1992, p. 5] User pull allows the warfighter to

customize the information he receives and promises the prompt delivery of

what the warfighter considers to be essential. User pull also includes the

ability of the user to extract, upon demand, any information contained in the

infosphere. [User Pull-White Paper, 1993, p. 1]

Producer push consists of information being generated at "producer"

facilities, such as intelligence centers, which will be pushed to the warfigher

(user) independent of any demand or request. So as not to maintain the

status quo, the producer push is tailored toward the user's specific missions

and will be adapted to changes in user's missions and status. [User Pull-

White Paper, 1993, p. 2] The move from concept to technical definition is

currently in progress for user pull and producer push.

The other major concept in the Copernicus architecture is the idea of

virtual circuits. A virtual circuit (or network) is a circuit which is set up

temporarily in order to allow for the efficient transfer of required data. The

virtual circuit may consist of several different types of communication

equipment to send the data. This idea is quite different from the U.S. Navy's

current architecture of permanent, "hard wired" circuits. The entire life of a

virtual circuit may range from 5 minutes to 5 hours to 5 days. [Copernicus

Architecture, 1991, p. 3-1] The concept of virtual circuits has successfully

been tested in exercises such as Joint Warfighting Interoperability

Demonstrations (JWIDs). Perhaps Copernicus' most important attribute is

the implementation of the above concepts while defining and forming this

architecture.

2. Implementation
Copernicus provides an architecture, using the new concepts mentioned

above, which will lead to a technological implementation. Initially, the

Copernicus architecture consisted of four pillars: the Global Information

Exchange Systems (GLOBIXS), the CINC Command Complex (CCC), the

Tactical Data Information Exchange Systems (TADIXS), and the Tactical

Command Center (TCC). By 1995, Copernicus had evolved into five pillars.

The fifth pillar, Battlecube Information Exchange System (BCIXS), extends

the architecture to include the battlecube, the area in which shooters and

weapons reside and are used.[Copernicus Forward, 1995, p.5] With these

five pillars, the Copernicus architecture will act as an interactive framework

that ties together the C2 process of the Joint Task Force (JTF) commander,

the Navy tactical commander afloat, the numbered fleet commander and

others with the CINC's ashore. [Copernicus Architecture, 1991, p. 3-1]

GLOBIXS, the first pillar, are virtual networks that link the command

and activities ashore to support the forces afloat. They are configured on a

theater or worldwide basis and are constructed to transport, standardize, and

concentrate shore-based sensor, analytic, command support, administrative,

and other data for further passage to commanders afloat. GLOBIXS will be

constructed like interstate highways-they are limited-access, high speed and

highly concentrated. In addition, they have connections among each other so

that traffic may be shunted across several GLOBIXS as well as to the

operating forces through a consolidated CINC Command Complex (CCC).

[Copernicus Architecture, 1991, p. 4-1]

The number and nature of GLOBIXS is intended to be dynamic, so the

architecture can support future command structures and individual CINC

unique priorities. There are to be eight standing GLOBIXS around the

world. They are the following: SIGINT GLOBIXS, Anti-Submarine Warfare

(ASW) GLOBIXS, SEW GLOBIXS, Imagery GLOBIXS, Data Base

Management GLOBIXS, Command GLOBIXS (a multi-media net connecting

CINC's, JTF Commanders, numbered fleet commanders, etc.), Research and

Development Information Exchange System, and Navy Information

Exchange System (NAVIXS). NAVIXS will be the Navy implementation of

the Defense Message System. The GLOBIXS will use current and future

common-user communication systems, such as the Defense Communication

System, as vehicles for network communications. [Copernicus Architecture,

1991, pp. 4-1,2]

The CINC Command Complex (CCC) is the second pillar of Copernicus.

The CCC will include a number of existing organizations brought together

technologically by common workstations connected to a metropolitan area

network (MAN). Like the GLOBIXS, the CCC is a virtual network. The CCC

MAN will provide the "information highway" over which GLOBIXS and

Tactical Data Information Exchange System (TADIXS) data will travel, as

well as that data generated at the CCC. [Copernicus Architecture, 1991, p. 5-

1]

The GLOBIXS will terminate into the CCC. In addition, the CCC MAN

will be connected to many local area networks (LANs) contained within the

organizations that collectively make up the CCC. Because the CCC includes a

MAN, the CCC should be viewed as an extremely flexible construct that

could include Navy and Non-Navy agencies and organizations as required by

the CINC. One should keep in mind that the GLOBIXS is an aggregation of

"communities of common interest" while the CCC is aggregation of CINC

command structures ashore. [Copernicus Architecture, 1991, p. 5-1]

There are six organizational building blocks envisioned to comprise the

core of a CCC. They are the following: Fleet Command Center, Operations

Watch Center (a collection of GLOBIXS anchor desks acting as a gateway for

the at sea Composite Warfare Commander), the SEW Center, the Research

Center, the Joint Intelligence Center, and finally the ASW Center. These

centers, in the aggregate a CCC, will serve as the centralized C4I center for

the implementation of the missions assigned to the CINC. The CCC supports

the commander by processing, displaying, and disseminating organic and

non-organic information to provide a clear picture of operations within the

theater. This information is the basis for plans of action and force direction

decisions. [Copernicus Architecture, 1991, pp. 5-4,4]

As part of the CCC duties, the CCC personnel will anchor-filter, sort,

analyze and move-GLOBIXS information for the tactical commander. The

GLOBIXS will afford the Composite Warfare Commander (CWC) the

capability to receive the information tailored to his needs in order to fulfill

his specific mission. If he so desires, the CWC may decide that some or all

GLOBIXS information be anchored by afloat personnel, based upon his

personal preference. With full implementation of Copernicus, the CCC

anchors will act as interfaces, or gateways, between the GLOBIXS and

TADIXS virtual networks. Information taken from their respective GLOBIXS

networks will be filtered and consolidated into a concise, uniform package

that can be sent over the TADIXS to the Tactical Command Centers (TCC)

discussed later. These same personnel will similarly transmit "anchored"

TADIXS information over their respective GLOBIXS networks. [Rand, 1992,

p. 8-9]

The TADIXS, the third pillar, will be the link that provides a shared,

common tactical picture in the CCC and the TCC. [Copernicus Architecture,

1991, p. 6-1] TADIXS are to be the virtual networks which will support

afloat TCCs. TADIXS are envisioned as information nets time-sharing

communication circuitry over a broad range of bearer services, transmission

media such as UHF, SHF, EHF, commercial SATCOM and HF. The

information of one TADIXS may be supported by several channels and,

conversely, one channel may support several TADIXS. [Rand, 1992, p. 16]

This is also known as dynamic resource allocation.

The number of TADIXS will not be fixed; instead, they will be

connected for the length of time necessary to transport the data to the

subscribers and then broken. Because of this, TADIXS have been grouped

into four broad categories, somewhat analogous to GLOBIXS. The four

categories are Command TADIXS, Support TADIXS, Direct Targeting

TADIXS, and Force Operations TADIXS. [Copernicus Architecture, 1991, pp.

6-1,2] Initially, the actual implementation of TADIXS was to be the

Communication Support System (CSS). CSS has been replaced by the Joint

Maritime Communications Strategy (JMCOMS). JMCOMS implements the

tactical communications segment of the Copernicus C4I architecture.

JMCOMS has a three pronged approach: Automated Digital Network System

(ADNS), SLICE Strategy (implemented as Digital Modular Radio) and the

Integrated Terminal Program (ITP). [JMCOMS Overview, 1997, p.l]

The fourth pillar in the Copernicus architecture is the Tactical

Command Center (TCC). The TCC is intended to signify the combat "nerve

centers" of the tactical commander and his units. Thus, the TCC in

Copernicus means not only the Tactical Flag Command Center (TFCC),

Combat Information Center (CIC), and other C4I spaces/centers on a

flagship, but also the tactical centers for individual units. Architecturally,

the TCC is analogous to the CCC. The TCC provides the tactical displays,

integrated information management, and accessibility to tactical

communications to support Navy warfighting missions. Both the CCC and

the TCC will share a consistent tactical picture and connect the Navy to the

Services and to allies, at the tactical level and the theater level. With the

establishment of fiber optic busses afloat, the LAN connectivity used in the

TCC will become virtual and allow for high speed, high bandwidth data

transmission.

The final pillar in the Copernicus architecture is the Battlecube

Information Exchange System (BCIXS). The battlecube is a conceptual,

multi-dimensional area that includes subsurface, surface, air and space as

the environment for conducting warfare. BCIXS represents the battlecube in

which tactical forces operate. BCIXS boundaries are fluid and defined by the

dynamics of the battle. Shooters operating in the battlecube form the

operational nodes in the BCIXS. Shooters are equipped with C4I tools that

allow them to receive and process information from the Copernicus

architecture.

B. JOINT MARITIME COMMUNICATIONS STRATEGY
As mentioned earlier, the initial implementation of the TADIXS pillar of

Copernicus was to be the Communication Support System (CSS). To support

the gradual implementation of the Copernicus communications segment, a

new technical and program strategy, replacing CSS, has been implemented

called the Joint Maritime Communications Strategy (JMCOMS). JMCOMS

incorporates the latest advances in commercial and military communications

technology to maximize bandwidth, enabling the sharing of information

seamlessly, in real- or near real-time, through flexible, adaptive and

interoperable systems and services. "JMCOMS' rapid, reliable, and

reconfigurable communications connectivity to all echelons of command and

its accompanying information transfer infrastructure make the sensor-to-

shooter construct a reality in the C4I environment." [JMCOMS Overview,

1997, p.l]

To accomplish its mission, JMCOMS has taken a three pronged

approach: Automated Digital Network System (ADNS), the SLICE strategy

(Digital Modular Radio (DMR)) and Integrated Terminal Program (ITP).

ADNS forms the backbone of JMCOMS. ADNS uses off the shelf protocols,

processors and routers to create a robust and flexible networking

environment. Currently, Internet Protocols, Asynchronous Transfer Mode

and other commercial products are being adopted or adapted. Interfaces to all

RF media from HF to EHF provide the total throughput and access needed.

Networking techniques make efficient use of available channels. [JMCOMS

Overview, 1997, p.3]

The SLICE strategy uses digital implementation of new modulation

techniques, coding strategies and encryption devices. Powerful signal

processing and software reconfigurable radios will be implemented in a

compact, economical bus environment resulting in more radio for less money.

DMR, which implements the SLICE strategy, covers <2 Ghz terrestrial and

SATCOM (satellite communications) requirements. The Integrated Terminal

Program (ITP) is a strategy to meet future requirements for high capacity

satellite communications for ships, submarines and shore commands in a

cost-effective manner. ITP intends to migrate current SATCOM systems

which operate above 2 Ghz to open architecture, modular, multi-band

terminals and low observable antennas.

10

C. DEVELOPMENT OF THESIS
The Navy's current message prioritization scheme has only four

different sender assigned precedences. From lowest priority to highest

priority the categories are Routine, Priority, Immediate and Flash. Each

precedence has a delivery time limit associated with it and a higher priority

message (i.e. Flash vs. Priority) will automatically supersede the lower

priority message and be sent first. If there is a queue for message traffic,

then the queue operates on a First In, First Out (FIFO) basis within each

precedence. When the message system is heavily loaded, large delays result

for the lower priority messages. In fact, during Desert Shield/Desert Storm

(DS/DS), there were delays of two to three days for Immediate messages,

which are normally required to be delivered within 5 minutes of

transmission. These long delays cause a lack of faith in operators in the

message system to get messages through in a timely manner. It is surmised

that messages are eventually given higher priorities than normally required

to help ensure timely delivery. In DS/DS, it was also found that numerous

messages and information were sent out repetitively to help ensure receipt.

Combined with large numbers of messages that contain information

unimportant to the warfighter, information overload occurs at the area least

able to handle or afford it~the warfighter.

To help combat this information overload, the Navy has developed the new

C4I concept named Copernicus. Copernicus, as mentioned earlier, has a new

way of dealing with communications, dynamic resource allocation, as well as

a new way of looking at information, user pull or producer push. Currently,

these new ideas are still being researched, explored as well as defined. Some

of the problems inside these new areas deal with prioritization of messages

and information. What type of information is user pull (or can we expect to

be pulled by the user) vice producer push? Is user pull given a higher

priority than producer push simply because the user (warfighter) asked for

11

the information? For system development purposes, what ratio can be

expected for producer push information to user pull information? While this

thesis does not address these questions, it will look at prioritization and its

effect on system throughput.

This thesis looks at prioritization under the new concept of Copernicus

and ADNS. With a simple communications node model and different

algorithms, this thesis looks at whether or not prioritization/ reprioritization

algorithms would increase efficient use of limited communications assets.

The result of these prioritization algorithms may mean that if all users of the

message/information system know that all messages will get through in a

"reasonable" amount of time, trust in the systems will go up and message

precedence inflation need not occur. If the delivery time for Flash messages

was slightly longer, what would that do to the overall average delivery time

as well as for each precedence? This thesis, using operational analysis

modeling and statistical techniques, gives some examples as to what may

determine the priority of a message vice the current precedence system. In

addition, the thesis uses user pull as a feature in the prioritization

algorithms in order to see what the effect might be in the Navy's developing

and future message handling/C4I systems. This is important since one of the

major emphases of Copernicus is user pull. With this radical change from

current communications systems, the effect of user pull should not be

overlooked in terms of its effect on the Navy's message handling/C4I systems.

D. CHAPTER SUMMARY
This chapter has given an overview of the U.S. Navy's new C4I concept

Copernicus, described the communications segment of Copernicus. The next

chapter will describe how the communications node model was developed.

12

III. COMMUNICATION NODE MODEL DEVELOPMENT

This chapter lays out the foundation for the development of the

communication node model and the algorithms. The model developed is a

simple one but provides an effective way of simulating and measuring the

effect of different prioritization algorithms. The limitations of the model are

discussed in this chapter as well as the assumptions for the model. Some

aspects of job shop scheduling were used in the algorithms that were tested

against the base case and so a brief review of job shop scheduling is also

included.

A. MODEL GOALS
As the Navy changes the way it communicates information, thought

may be given to changing some of the classifications or criteria used for

data/information. Additionally, in these days of fiscal austerity, is it possible

to more efficiently utilize the Navy's communication assets by making

software vice hardware changes. That is the crux of this thesis. By

changing how the Navy prioritizes its messages and information, messages of

all precedence types will have shorter average delivery times.

As mentioned earlier in this thesis, the current or base case of

prioritization of messages in the Navy is the sender assigning a precedence.

Then the communication node places the message in a FIFO queue with

others of its precedence. Suppose a Routine precedence message arrives at a

communications node at time zero. At time five, when an Immediate

precedence message arrives at the communications node, even if the Routine

message has not yet been sent out, the Immediate message will automatically

be sent out before the Routine message. In fact, all of the higher precedence

messages will be sent first. Thus during heavy loading, the lower precedence

messages may not get sent out until loading drops substantially.

13

This modified FIFO queue algorithm of prioritization is what forms the

base case in the model developed for this thesis. The results of the base case

algorithm's performance under a heavily loaded message system are

compared to the results of one other algorithm under similar loading. Also,

the thesis looks at the potential effects that user pull and producer push

might have on a message system. This thesis uses the model and associated

algorithms to prove or disprove the concept that new prioritization

algorithms may allow for more efficient use of scarce communication

resources.

The base case algorithm is tested against another algorithm. The

alternate algorithm takes into account several other characteristics of the

messages before assigning a prioritization. The factors considered are the

following: assigned precedence, information type contained in the message,

length of the message, whether the information is user pull or producer push

information, and finally, length of time in the queue. The alternate

algorithm reprioritizes the queue at designated intervals in order to take into

account the length of time a message has been waiting. This, of course, is a

major difference between the base case and the alternate algorithm. The

interval was chosen by the author. The model and algorithms will be

discussed in detail later in the thesis.

B. JOB SHOP SCHEDULING
Job shop scheduling is an idea that comes out of the manufacturing

business and the operations analysis world. A job shop is characterized by

sets of equipment that are used in the manufacture of different and diverse

orders. The sequence of the orders or jobs through the sets of equipment may

differ substantially; thus causing scheduling and flow problems. [Groff,

1972, p. 437] Job shop scheduling seeks to minimize the average flow time

14

through the job shop, minimize the average waiting time and minimize

average lateness. These in turn have an effect on the average utilization of

the shop. [Groff, 1972, p. 439] This appears to be similar to a message

system in which different messages (or data) must use the same equipment,

but with different routings, etc. This appears to be exactly what a system

like ADNS will address at a communications node.

Three factors are often considered when doing job shop scheduling.

First, include a function of the job due date to pace the progress of individual

jobs and reduce the variance of the lateness distribution. Second, include

some consideration of the job processing time to reduce congestion and to get

jobs through the shop as quickly as possible. Third, include some foresight to

avoid selecting a job from a queue which, when the current operation is

completed, will move on to another queue which is already congested. [Groff,

1972, p. 442] Another factor which is not usually mentioned is one of

management priorities. Jobs which management views as being the most

important also require extra consideration in the scheduling decision, just

like the assignment of a priority to a message by the sender. These four

criteria match up well to the qualities of a message handling system. One

factor that is not really applicable is the factor regarding loading at the next

operation for a job. Especially with virtual circuits and networks, when a

message is sent, it is expected that the system has the capacity to route the

message all the way to its destination. The processing time of a

manufacturing job matches well with the processing time of a message (size

of a message divided by the data rate of the system). The due date of a

manufacturing job also matches well with the precedence concept, in that the

precedence, with the required delivery time associated with each precedence,

indicates a desired "no later than" delivery time.

15

The goals of job shop scheduling also match well with a message

handling system. Communications managers desire to reduce the average

delay in sending a message for all messages. In addition, increasing the

degree of utilization of limited communication assets is always a goal.

Reducing the lateness of messages is certainly a worthy goal.

C. THE MODEL VERSUS REAL WORLD
As ADNS is actually implemented, it is expected to prioritize all

message and information traffic. At this point, however, ADNS does not

exist in its final form. Due to this, many assumptions were made and a

simple communications node model was designed. This also reflects an

emphasis on algorithm development and coding. When ADNS reaches its

final form, the system will be a very complicated, software intensive system.

For the purposes of proof of concept, however, the model developed, shown in

Figure 1 below, is believed to be sufficient to illustrate the concept.

Msg Generator! Priority Alg.) * Comm Box

Queue (if needed^ Msg Generator

Figure 1. Model visual depiction.

The model consists of two message generators, each generating

messages independently, an algorithm to prioritize the generated messages

as well as reprioritize the queue, plus one communication box. The

communication box plays the role of the transmission media. When free, it

immediately sends a message. If transmitting a message, it waits until it is

16

free and then pulls the next message from the queue. The model will be

discussed in more detail at a later point in the thesis.

D. MODEL ASSUMPTIONS
The following are the assumptions associated with the communications node

model. Because the emphasis of this thesis is the effect of prioritization on

the communications node throughput, many assumptions were made to keep

the model simple. The effect of prioritization algorithms on the

communications node throughput should be the same for a simple or complex

model given that all other elements are held equal.

• Assumed the message generators' data rate as well as the pulling or
outgoing data rate.

• Nearly fully loaded system. The system was assumed to be close to
but not exceeding full capacity. This was to avoid complications with
an overloaded system, i.e. one that will rarely be capable of sending
all messages. The loading of the system was at levels of 80, 90 and
95%.

• Message sizes. With no data easily available regarding message size
distribution, a uniform random distribution was assumed.

• Information types. Fourteen different information types were
assumed, in order to have a broad base without being overwhelming.
The information type breakdown is as follows: normal peacetime
operations, intelligence reports, ship and troop movements, weather,
aircraft movements, reports of enemy contact, reports of unusual
major movements of military forces in peace or strained relations,
enemy counter attack, request for or cancellation of additional
support, widespread civil disorder/grave national disaster, distress
assistance, operational plans concerning projected operations, major
strategic decisions, administrative, logistic and personnel matters.

• User pull information. It was assumed that 25% of messages in each
information type from message generator 1 were user pull data. For
message generator 2, it was assumed that the ratio of user pull to
producer was different and so 75 to 25 was assumed. In addition, it
was assumed that user pull information should be given a higher
priority than pushed information.

17

• Distribution of information types. There was a uniform random
distribution for each message type assumed. In other words, no
information type was more likely than another.

• Distribution of precedence type. A uniform random distribution of the
four precedence types was used, e.g., 25% each. This also reflected
the high stressed, high loading of the message system in that there
were much more high precedence messages than are normal in
peacetime operations.

With the above assumptions, the model and algorithms were considered

detailed and accurate enough to allow for the concept to be examined. Again,

the focus of this thesis is the effect of the algorithms on virtually any

communication node.

E. CODE CHOICE
The author looked at several different COTS (commercial off the shelf)

computer software codes to see which would be suitable for the purposes of

this model. CommNet and OpNet were, at first, the most favored candidates

since they are network and communications modeling and simulation

software. However, each package of software required detailed information

regarding the communication system. As previously noted, such details (i.e.

packet overhead size) are not yet known. The software packages were also

not located on the computers used by students for thesis and classwork. In

addition, both software packages require modification for this study with

computer languages with which the author has no programming experience.

Borland's Turbo Pascal was chosen because of the author's experience

with the software. In addition to the author's experience with the software,

Turbo Pascal has a relatively benign troubleshooting environment to allow

for debugging. This troubleshooting environment was used quite extensively

during the model and algorithm code development. With the selection of

Turbo Pascal, several drawbacks were accepted. First, the language is not

18

designed for nor well suited for communication modeling. Second, more

actual code would need to be written since no communication models existed

in the software (vice Opnet, etc.).

Several lessons were learned while developing this thesis. One, Turbo

Pascal limits the size of the data structures, thereby preventing one of the

algorithms from being coded and tested. Two, because of Turbo Pascal's

nature, the language is very difficult to use for a communication model.

Three, the troubleshooting environment was very useful and very helpful in

solving numerous code problems.

F. CHAPTER SUMMARY
This chapter has examined the communications node model

development. It covered the goals of the model; how it resembles job shop

scheduling and can therefore use many of the same measures of performance.

In addition, the assumptions used in the model were stated as well as how it

compares to how ADNS is expected to look and why Turbo Pascal was used.

In the next chapter, the thesis will describe in detail the model and the

algorithms.

19

20

IV. COMMUNICATIONS NODE MODEL DESCRIPTION

This chapter will discuss in detail the model developed for this thesis

and the algorithms used to prioritize the messages generated in the model.

A. MODEL
The model, an event step simulation, consists of two message

generators, an algorithm to prioritize the messages being generated, and a

"comm box" which pulls the messages out of the system, analogous to the

messages actually being transmitted from the platform. The message

generators act independently, and provide messages with assumed Poisson

distribution arrival times. The arrival times are generated using the Turbo

Pascal uniform distribution random number generator and a formula which

converts the random number into an arrival time. The average number of

arrivals per minute varied between each set of runs.

When it was time for a message to be generated, the attributes of the

messages were then generated using the random number generator: the

message generators used a uniform distribution for the size of the message,

the precedence of the message, and the information type of the message.

There was a difference between the message generators for the distribution

of user pull and producer push. Message generator 1 randomly generated

user pull messages 25% of the time and producer push the other 75% of the

time. Message generator 2 randomly generated producer push messages 75%

of the time and user pull messages 25% of the time. The generation of the

user pull or producer push message was independent of what the previous

message had been, as was true for all the message attributes. The combined

arrival rate of the two message generators, as measured in average message

size (in bytes) multiplied by the average number of messages arriving each

21

minute, was set at .8, .9 and .95 of what the model was capable of pulling out

of the model. This ensured that the model was fully loaded but not

overloaded to a point that the model could not send out virtually all the

messages.

The comm box pulls messages based upon a given data rate. That data

rate is set at the beginning of a set of model runs and is measured in bytes

per minute. The comm box pulls a message at one of two conditions. One,

the queue is empty, the comm box is inactive, and a new message is

generated. Therefore, the new message is sent straight to the comm box and

is processed directly out of the model. Two, there are messages in the queue,

the comm box finishes with the message it is currently sending out, and then

pulls the next message from the front of the queue. If there is a queue, a

message may not bypass the queue. The message must go into the queue and

is then pulled in order of priority. One assumption of the comm box is that

there is no down time for the comm box. It assumed that the message system

works perfectly outside of the model, and the model can always send out a

message when it is time to send.

B. PRIORITIZATION ALGORITHMS
The first algorithm developed was the base case algorithm, the FIFO

queue. The code is contained in Appendix A. An array of four records was

developed, one record for each precedence of message. Each record has a

pointer to a linked list of all the messages in the queue ofthat precedence.

Each record also has an integer with the number of messages in that

particular linked list. If the comm box is busy sending out a message, then

the newly generated message enters the queue. Each message goes into the

linked list for its precedence and is pulled from that linked list in the order in

which it arrived, first in, first out. When pulling messages from the queue

22

for the comm box, the algorithm takes all messages from the highest

precedence first. Therefore, a Flash message will be sent first, no matter

what other precedence messages may have arrived at the queue first, and so

on through the precedences. This method was coded and successfully run on

the test platform.

The second algorithm developed was the array of linked lists algorithm.

The number of records in the array depends upon the maximum possible size

of the messages being generated during that run. This is due to the size

being a factor in the priority ranking of a message. Typically, the array was

the maximum possible size of the message plus two hundred. This allows for

the other attributes to be factored in to the ranking. Each record is for one

priority ranking and includes a pointer to the linked bist of messages in that

priority ranking as well as the addresses of the records that have messages

that are immediately above and below the priority ranking in question.

When a message is put into the queue, a point value or priority ranking (a

scalar value) is generated based upon the precedence, information type, size

and user pull/producer push classification. The equation was Priority = Size

+ InfoType + Precedence with an additional thirty places removed from the

priority ranking if the message was a user pull message. The lower the point

value generated, the higher the priority ofthat particular message. At

designated intervals, all the messages in the queue are pulled out of the

queue and have a new priority ranking generated, this time including the

length of time in the queue. The longer a message is in the queue, the higher

its priority is, given all other attributes being constant. This algorithm was

coded and successfully run on the test platform. The code is contained in

Appendix B. Run attributes such as arrival times, maximum message size,

etc., were kept small enough to avoid data structures that were too large for

the test platform.

23

The final algorithm developed was the five dimension matrix with a

search pattern. Each dimension of the matrix is a scale of one of the

attributes of a message: precedence, information type, size, user

pull/producer push, and time in the queue. Each message is placed in the

matrix based upon its attributes. With this method, there is no explicit

ranking of the worth of all attributes relative to each other. In addition, at

designated intervals, all the messages in the matrix are pulled out of the

matrix and reassigned a new priority. This reflects the time spent in the

matrix (queue). The search pattern starts searching for a message in the

"corner" of the matrix that consists of the smallest size, flash message

precedence, maximum time in the queue, most important information type

and user pull. The search pattern then searches through the matrix until it

finds a message to send. At this point, the comm box sends the message and

the search pattern, as long as there is at least one more message in the

matrix, continues its search for the next message to be sent. Should a new

message arrive in the part of the matrix that has already been searched, the

search pattern will return to that message in preparation to send that

message next. The search pattern developed for this algorithm would look at

and send all the Flash messages first and then the information types that

were considered the most important, the top four information types. From

then on, the search pattern would increment an attribute, look to see if there

was a message and then either send the message to the comm box or if no

message, increment the next attribute. This algorithm was found to have

data structures that were too large for the test platform and so was not coded

or able to be tested in this thesis but may be interesting for follow on work.

24

C. MODEL AND ALGORITHM DRAWBACKS
This model was developed without much input data from "real world"

systems. As such, the model does have significant drawbacks. These

drawbacks may include incorrect distributions used for the random number

generator, as well as for the percentage of user pull and producer push

messages produced. The model has not been verified nor validated by any

communication expert and so lacks those critical qualities. The model,

however, does serve its purpose in allowing for the examination of the

qualities of the different algorithms.

The algorithms are very different from one another and each has its

disadvantages. The base case does not allow for any other factors to used in

determining which messages should be sent out first. In the event of system

overloading, the lowest precedence messages may take days instead of hours,

Ala. Desert Shield/Desert Storm. In addition, the warfighter or

communications person may not change or customize the prioritization

algorithm to set his command needs or preferences.

The array of linked lists algorithm also has several drawbacks. When

reducing the five attributes down to one scalar value, there is a weighting

done of the attributes in relation to one another. While in this case all the

attributes were weighted the same, in reality, the size plays the dominant

role in determining priority. This is due to the large sizes the messages can

take on in relation to the other attributes. As an example, two messages with

similar attributes except size are being prioritized. The first message has a

size of 1500 bytes and the second has a size of 500 bytes. With all other

attributes held constant, the second message is 1000 points lower in the

priority ranking and therefore will be sent much sooner than the first

message. In addition, the first message could change every other attribute to

its most important classification and still not approach the priority ranking

of the second message. At this point, the array of linked lists algorithm may

25

be customized to change the ranking of information types or to allow for

weighting of the different attributes for prioritization, but not easily. This is

merely a matter of adding more code.

The five dimension matrix weighs each attribute equally by putting the

message in the matrix based upon the scale of each attribute. There is a

weight given to each attribute based upon the order in which the search

pattern progresses. In this case, the precedence type of Flash and the

information types were considered the most important. Also, because of the

data structures of this algorithm, the computer code used prevented the

algorithm from being coded or tested.

D. CHAPTER SUMMARY
This chapter has described in detail the communications node model

and the prioritization algorithms used on the messages in the

communications node. The next chapter will examine the results of the

model runs.

26

V. DATA ANALYSIS

The communications node model recorded several different data points,

which included total number of messages sent, average wait time of messages

before being sent and the average number of messages left in the queue at

the end of the model run. The measure of performance used to judge the

effectiveness of the algorigthms was the average wait time of a message. To

ensure the data was normal, the model was run at nine different settings

with fifty runs at each setting. These settings were chosen to look at the

effect of the algorithms across a range of different situations. The settings

are shown below in Table 1.

Table 1. Model Run Settings.

Run Num Msg Gen

Ratel

Msg Gen

Rate 2

Ave Msg

Size

Total Comm

Box Data

Rate

1 5 5 1000 10000 12500

2 5 5 1000 10000 11111

3 5 5 1000 10000 10526

4 50 5 1000 55000 88750

5 50 5 1000 55000 61111

6 50 5 1000 55000 57895

7 25 5 1000 30000 37500

8 25 5 1000 30000 33333

9 25 5 1000 30000 31579

Two-sample T tests and Analysis of Variance tests were run on the data.

The null hypothesis was that the means of the two samples being compared

27

were equal. The alternative hypothesis was that the two sample means were

not equal. This chapter discusses the analysis of the data given these

suppositions. The data results are contained in Appendix C.

A. AVERAGE MESSAGE WAIT TIME COMPARISON
The average time a message waited before being transmitted was

compared between the two algorithms at each of the nine run settings. At

every run setting, the null hypothesis was rejected. The average wait time of

a message in algorithm one was different than the average wait time for a

message in algorithm two. In fact, at every run setting, the first algorithm

(the modified FIFO queue) had a longer average wait time before the

message was transmitted. This difference could not be attributed to the

different run settings.

This would suggest that the prioritization/reprioritization algorithms do

have an effect on the average wait time of a message. In addition, algorithm

two, which reprioritized messages while they were in the queue, did have a

positive effect on the communications node and reduced overall message wait

times. A comparison of the means of the average wait times showed that on

average, messages treated under algorithm one waited about one and one

half times as long as those treated by algorithm two.

B. MESSAGE PRECEDENCE COMPARISONS
The data was compared between the two algorithms within each of the

four message precedence categories: Flash, Immediate, Priority, and Routine.

In the case of the Flash messages, the null hypothesis was rejected and the

means of the two samples were considered to be different. In every case, the

average wait time for Flash messages was less for algorithm one than

algorithm two. The increase in wait time for algorithm two ranged from two

28

to eight times as much as the average wait under algorithm one: The

average increase was about four times the algorithm one average wait. Some

increase in average wait time for Flash messages was expected. Even though

algorithm two takes into account other factors besides precedence, an

increase to the magnitude of multiples of eight were not expected.

For Immediate precedence messages, the null hypothesis was rejected.

The means of the two samples are different with algorithm one having lower

average wait times than algorithm two in every case. The increase in

average wait time ranged from 1.6 times the original average wait time to

four times the average wait time. The average increase in wait times was

approximately two times the original.

The results in the Priority precedence messages were more varied. In

all cases, the null hypothesis was rejected and the sample means were found

to be different. However, in three of the nine run settings, algorithm one was

found to have longer average wait times while algorithm two had longer

average wait times in the remaining six settings.

For the comparison of the Routine precedence messages, the null

hypothesis was rejected in all cases. In every case, algorithm two had shorter

average wait times than algorithm one. The increase in average wait times

for algorithm one ranged from two to seven times the average wait times

using algorithm two. The average increase was about five times the average

wait time from algorithm two.

It is interesting to note that in every case, the prioritization/

reprioritization algorithms made a difference in the average wait time of

messages before being transmitted. Indeed, as could have been predicted,

the average wait time of the Flash messages was increased while the average

wait time of the Routine messages was decreased with use of algorithm two.

This would indicate that a prioritization/reprioritization algorithm can be

29

devised that would work in ADNS. One problem, however, is the four to

eight times longer wait times of the Flash messages. The author believes a

algorithm could be encoded that restricted the wait time of a flash message

(immediate and priority as well) to a maximum time under normal to heavy

loading while still improving the average wait time for routine and at least

some priority messages.

C. PULL/PULL AND PUSH/PUSH COMPARISONS
The average wait for messages classified as user pull messages was

compared between the two algorithms. As would be expected, the null

hypothesis (the mean of sample one equals the mean of sample two) was

rejected. In each run setting, user pull messages treated by algorithm one

had a longer average wait time than those treated by algorithm two. This

result was expected since only algorithm two actually factored into the

prioritization if a message was in fact a user pull message. As explained

earlier, the user pull messages were considered more of a priority than the

producer push messages. A study of the means shows that the average wait

time for the user pull messages under algorithm one was typically twice as

long as the user pull messages under algorithm two.

The average wait time of producer push messages was also compared

between algorithm one and algorithm two treatments. As was expected, the

null hypothesis was rejected. Unexpectedly, the average wait time for

algorithm one was longer than that for algorithm two. On average, the

average wait for producer push messages under algorithm one was about one

and one half times that for algorithm two. This is unusual in that algorithm

two identified messages that were designated as producer push and lowered

their priority vis-a-vis the user pull messages. Thus the expected action was

that the producer push messages would have a longer average wait time

30

under algorithm two. It seems logical that the reduction in average wait

time is due to the decrease in overall average message wait time between

algorithm one and two. This has not been explored and provides an area for

further research.

D. PULL VERSUS PUSH COMPARISONS
A comparison of the average wait times for user pull versus producer

push messages was done to help ensure the algorithms operated correctly. In

comparing the average wait time for user pull messages versus producer

push messages under the algorithm one treatment, the null hypothesis was

accepted. The average wait for user pull and producer push messages was

statistically the same. This was expected since algorithm one did not

differentiate between user pull and producer push messages.

For algorithm two, the null hypothesis was rejected. There was a

difference between the average wait of the user pull messages and the

producer push messages. In every run setting, the user pull message average

wait was less than the producer push. Interestingly, the difference on the

most lightly loaded runs was the smallest, with producer push message

average wait about 1.1 times the wait for user pull messages. As the model

loading increased, so did the difference in average wait times with the most

heavily loaded runs having the average wait time for producer push

messages 1.5 times the user pull message wait time. While the difference in

average wait times was predicted based upon the successful run of algorithm

two, the difference due to communications node loading was not forseen. The

effect due to communications node loading is logical given the increased

chance of a message having to wait as the loading increases and the priority

of user pull messages over producer push.

31

E. CHAPTER SUMMARY
This chapter has examined the data results recorded after multiple

model/algorithm runs. The data was moved into Microsoft Excel

spreadsheets to ease data manipulation prior to the actual statistical tests

being run in Minitab. On the whole, the results were as expected and allow

for more study on what type of prioritization/reprioritization algorithms

should be used.

32

VI. CONCLUSION

A. RESULTS
The results of the data analysis clearly show that the prioritization/

reprioritization algorithms do effect the average wait time of a message

before it is transmitted. The effect is dependent on the algorithm used and

what precepts it has written into the code. Overall, lower average wait time,

the desired effect, was achieved and may indicate a route to more efficient

use of the U.S. Navy's scarce communications resources.

B. LESSONS LEARNED
Several lessons learned were generated in the process of doing this

thesis. First, more time would be allocated for generation of the computer

code and most importantly, the troubleshooting of the code. Second, while

not necessarily envisioned to be used during at the beginning of the thesis,

additional data output would be written into the code at the beginning in

order to minimize data manipulation at the end should the initial results

require it. Third, use of computer code that more easily supports model

generation and modification would allow the writer to focus more on the

results of the model runs and reduce time spent on creating the model. This

would also allow the coding of the third algorithm with an n-dimensional

matrix holding the messages in priority order. Some suggestions might be

OpNet, CommNet and SES/Workbench modeling codes.

C. RECOMMENDATIONS FOR FURTHER RESEARCH
Several areas from this thesis can be studied further to allow the U.S.

Navy to take maximum advantage of these findings. First, more research

33

could be done on how much increase in the average wait time for Flash

messages is allowable and how much does the average wait time for Routine

messages (and Priority) change for each unit change in Flash message

average wait time.

Second, the third algorithm mentioned above, or others similar to it,

could be coded and tested to see what data structure/prioritization structure

works most efficiently. As part of this research, more research on what

factors should be used for the prioritization of a message as well as the

relative weights of each factor should be conducted.

Third, research on how to encode the algorithms for ADNS could be done

to ease utilization in the fleet. Other services should use this type of

prioritization if the U.S. Navy does move towards this in order to avoid

"stovepiping". Overall, software improvements to communications systems

without the need to purchase additional equipment allows the military to

continue to expand communication capabilities for less dollars.

34

APPENDIX A: COMMUNICATION NODE MODEL WITH
ALGORITHM ONE

{Chris Halton

Thesis Algorithm 4

the Base Case (FIFO)

last mod: 13 Aug 94}

unit THESIS 1;

interface

procedure PRIORITIZE3(L : integer; var outfile : text);

implementation

procedure PRIORITIZE3(L : integer; var outfile : text);

type FilePOINT = AFileTYPE;

FileTYPE = record

FilelnfoType : integer;

FileUserPull: boolean;

FileSize: integer;

FileTimeEnter: real;

Next: FilePOINT

end;

QueueRECORD = record

Size: integer;

Next: FilePOINT

end;

QueueTYPE = array[1..4] of QueueRECORD;

35

AveWaitTYPE = array[1..4,1..14] of real;

WaitTYPE = array[1..4,1..14] of real;

SentTYPE = array[1..4,1..14] of integer;

CountTYPE = array[1..4,1..14] of integer;

var Queue : QueueTYPE;

AveWaitMatrix: AveWaitTYPE;

WaitMatrix : WaitTYPE;

SentMatrix: SentTYPE;

CountMatrix: CountTYPE;

TotalMsgs, PushNumb, PushSent, PullNumb, PuUSent,

TotalMsgSent,

QueueLength: longint;

InfoPriority, FSize, InfoType, InfoTemp, NumRate, NumRate2,

InfoType2,

InfoType3, MsgSize, UsePull, Sizel,

i, j, InfoPri : integer;

QueuePullUp, MsglUp, Msg2Up, PullTest, MsgUp : boolean;

NextTimeStep, ModelTime, AveWaitTime, PullWaitTime,

PullAveWait,

MsgWaitTime, MsglTime, Msg2Time, TotalWaitTime,

PushWaitTime,

QueuePullTime, MsglRN, Msg2RN, MsgTime, PushAveWait,

PercentSent,

PercentQueue: real;

TempPtr, Ptr: FilePOINT;

const DataRate = 57895;

36

ArrivalRatel = 50;

ArrivalRate2 = 5;

procedure MsgGenl (ModelTime : real; var MsgOneTime : real);

begin

MsglRN := SYSTEM.Random;

MsgOneTime "ModelTime - ((l/Arrivaffiatel)*ln(MsglRN));

end;

procedure MsgGen2(ModelTime : real; var MsgTwoTime : real);

begin

Msg2RN := SYSTEM.Random;

MsgTwoTime := ModelTime - ((l/ArrivalRate2)*ln(Msg2RN));

end;

begin

for i := 1 to 4 do begin

Queue[i].Size := 0;

for j := 1 to 14 do begin

AveWaitMatrix[i,j] := 0.0;

WaitMatrixfij] := 0.0;

SentMatrix[i,j] := 0;

CountMatrixfij] := 0;

end; {for}

end; {for}

Randomize;

ModelTime := 0.0;

NextTimeStep := 0.0;

QueueLength := 0;

QueuePullTime := 0.0;

TotalMsgSent := 0;

37

TotalWaitTime := 0.0;

AveWaitTime := 0.0;

UsePull := 0;

PullNumb := 0;

PullSent := 0;

PushNumb := 0;

PushSent := 0;

PullWaitTime := 0.0;

PullAveWait := 0.0;

PushWaitTime := 0.0;

PushAveWait := 0.0;

InfoPriority := 0;

FSize := 0;

Sizel := 0;

InfoType := 0;

InfoTemp := 0;

NumRate := 0;

NumRate2 := 0;

InfoType2 := 0;

MsgSize := 0;

InfoPri := 0;

MsgWaitTime := 0.0;

MsgTime := 0.0;

MsgGen l(ModelTime,MsglTime);

MsgGen2(ModelTime,Msg2Time);

while (ModelTime < 1000.0) and (QueueLength < 10000) do begin

{writeln(*Start');}

MsgUp := False;

38

begin

MsglUp := False;

Msg2Up := False;

QueuePullUp := False;

if (MsglTime >= ModelTime) and (Msg2Time >= ModelTime) and

(MsglTime < Msg2Time) then begin

NextTimeStep := MsglTime;

end {if}

else if(MsglTime >= ModelTime) and (Msg2Time >= ModelTime) and

(Msg2Time < MsglTime) then begin

NextTimeStep := Msg2Time

end {else}

else if (MsglTime >= ModelTime) and (Msg2Time < ModelTime) then

NextTimeStep := MsglTime;

end {else if}

else if (MsglTime < ModelTime) and (Msg2Time >= ModelTime) then

begin

NextTimeStep := Msg2Time

end; {else if}

if (QueuePullTime <> 0.0) then begin

if (QueuePullTime > ModelTime) and (QueuePullTime <

NextTimeStep)

then begin

NextTimeStep := QueuePullTime

end; {if}

end; {if}

if (NextTimeStep = MsglTime) then begin

39

l;

MsglUp := True

end; {if}

if (NextTimeStep = Msg2Time) then begin

Msg2Up := True

end; {if}

if (NextTimeStep = QueuePullTime) then begin

QueuePullUp := True

end; {if}

ModelTime := NextTimeStep;

if MsglUp then begin

{writeln('Msg 1');}

InfoPriority := Random(4);

InfoPri := InfoPriority + 1;

Sizel := Random(2000);

FSize := Sizel + 1; {to avoid zero}

InfoType := Random(14);

InfoTemp := InfoType + 1; {to get into queue}

UsePull := Random(4);

if (UsePull = 0) then begin

PullNumb := PullNumb + 1;

PullTest := True;

end

else begin

PushNumb := PushNumb + 1;

PullTest := False;

end;

CountMatrix[InfoPri,InfoTemp] := CountMatrix[InfoPri,InfoTemp] +

40

begin

if (QueueLength = 0) and (QueuePullTime <= ModelTime) then

QueuePullUp := True;

QueuePullTime := ModelTime;

MsgUp := True;

end {if}

else begin {place in queue}

NumRate := InfoPriority +1; {to adjust to queue numbers}

if Queue [NumRate].Size = 0 then begin

new(Queue[NumRate] .Next);

Queue [NumRate].Next A.FileInfoType := InfoType;

Queue[NumRate].NextA.FileSize := FSize;

Queue [NumRate].Next A.FileTimeEnter := ModelTime;

if PullTest then begin

Queue[NumRate].NextA.FileUserPull := True;

end

else begin

Queue[NumRate].NextA.FileUserPull := False;

end;

Queue[NumRate].NextA.Next := nil;

Queue [NumRate].Size := 1;

end {if}

else begin

Ptr := Queue[NumRate].Next;

while PtrA.Next <> nil do begin

Ptr := PtrA.Next;

end; {while}

new(PtrA.Next);

41

Ptr :=PtrA.Next;

Ptr\FüeInfoType := InfoType;

PtrA.FileSize:=FSize;

PtrA.FileTimeEnter := ModelTime;

Ptr\FileUserPull := PuUTest;

PtrA.Next:=nil;

Queue[NumRate].Size := Queue[NumRate].Size + 1;

end; {else}

QueueLength := QueueLength + 1;

end; {else}

MsglUp := False;

MsgGen l(ModelTime,MsglTime);

end; {if}

if Msg2Up then begin

{writelnC Msg2');}

InfoPriority := Random(4);

InfoPri := InfoPriority + 1; {to adjust to queue numbers}

Sizel := Random(2000);

FSize := Sizel + 1; {to avoid zeros}

InfoType := Random(14);

InfoTemp := InfoType +1; {to adjust to queue numbers}

UsePull := Random(4);

if (UsePull = 3) then begin

PushNumb := PushNumb + 1;

PuUTest := False;

end

else begin

PullNumb := PullNumb + 1;

42

l;

PullTest := True;

end;

CountMatrixp[nfoPri,InfoTemp] := CountMatrix[InfoPri,InfoTemp] +

if (QueueLength = 0) and (QueuePullTime <= ModelTime) and

(not QueuePullUp) then begin

QueuePullUp := True;

QueuePullTime := ModelTime;

MsgUp := True;

end {if}

else begin {place in queue}

NumRate := InfoPriority + 1; {to adjust to queue numbers}

if Queue[NumRate].Size = 0 then begin

new(Queue[NumRate] .Next);

Queue[NumRate].NextA.FileInfoType := InfoType;

Queue[NumRate].NextA.FileSize := FSize;

Queue[NumRate].NextA.FileTimeEnter := ModelTime;

Queue[NumRatel.NextA.FileUserPull := PullTest;

Queue[NumRate].NextA.Next := nil;

Queue [NumRate]. Size := 1;

end {if}

else begin

Ptr := Queue[NumRate].Next;

while PtrA.Next <> nil do begin

Ptr := PtrA.Next;

end; {while}

new(PtrA.Next);

Ptr := PtrA.Next;

43

PtrA.FüeInfoType := InfoType;

PtrA.FüeSize := FSize;

PtrA.FüeTimeEnter := ModelTime;

PtrA.FüeUserPvdl := PullTest;

PtrA.Next := nil;

Queue[NuxnRate].Size := Queue[NumRate].Size + 1;

end; {else}

QueueLength := QueueLength + 1;

end; {else}

Msg2Up := False;

MsgGen2(ModelTime,Msg2Time);

end; {if}

if QueuePullUp then begin

{writelnC QueuePullUp');}

if (QueueLength = 0) and (MsgUp = False) then begin

QueuePullUp := False;

{writelnC ModelTime = ',ModelTime,' QueuePull False');}

end {if}

else if (QueueLength = 0) and (MsgUp = True) then begin

{writelnC QueueLength = 0 ');}

MsgTime := FSize/DataRate;

QueuePullTime := ModelTime + MsgTime;

if PullTest then begin

PullSent := PullSent + 1;

PullAveWait := PullWaitTime/PullSent;

end

else begin

PushSent := PushSent + 1;

44

PushAveWait := PushWaitTime/PushSent;

end;

NumRate := InfoPriority +1; {to get queue numbers}

NumRate2 := InfoType +1; {to get queue numbers}

SentMatrix[NumRate,NumRate2] :=

SentMatrix[NumRate,NumRate2] + 1;

AveWaitMatrix|NumRate,NumRate2] :=

WaitMatrix[NumRate,NumRate2]/

SentMatrix[NumRate,NumRate2];

CountMatrix[NumRate,NumRate2] :=

CountMatrix[NumRate,NumRate2] - 1;

QueuePullUp := False;

end {if}

else if (QueueLength > 0) then begin

{writeln('QueueLength = ',QueueLength);}

if Queue[l].Size > 0 then begin

MsgSize := Queue[l].NextA.FileSize;

MsgTime := (MsgSize/DataRate);

MsgWaitTime := ModelTime - Queue[l].NextA.FileTimeEnter;

InfoType2 := Queue[l].NextA.FüeInfoType;

InfoType3 := InfoType2 +1; {to get queue numbers}

if Queue[l].NextA.FileUserPull then begin

PullWaitTime := PullWaitTime + MsgWaitTime;

PullSent := PuUSent + 1;

PullAveWait := PullWaitTime/PullSent;

end

else begin

PushWaitTime := PushWaitTime + MsgWaitTime;

45

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

SentMatrix[l,InfoType3] := SentMatrix[l,InfoType3] + 1;

CountMatrix[l,InfoType3] := CountMatrix[l,InfoType3] - 1;

WaitMatrix[l,InfoType3] := WaitMatrix[l,InfoType3] +

MsgWaitTime;

AveWaitMatrix[l,InfoType3] :=

WaitMatrix[l,InfoType3]/SentMatrix[l,InfoType3];

QueuePullTime := ModelTime + MsgTime;

Queue[l].Size := Queue[l].Size - 1;

QueueLength := QueueLength - 1;

if Queue[l].NextA.Next <> nil then begin

TempPtr := Queue [1] .Next;

Queue[l].Next := Queue[l].NextA.Next;

dispose(TempPtr);

TempPtr := nil;

end {if}

else if Queue[l].NextA.Next = nil then begin

dispose(Queue[1] .Next);

Queue[l].Next :=nil;

end;

end {if}

else if Queue[2].Size > 0 then begin

MsgSize := Queue[2].NextA.FileSize;

MsgTime := (MsgSize/DataRate);

MsgWaitTime "ModelTime - Queue[2].NextA.FileTimeEnter;

InfoType2 := Queue[2].NextA.FüeInfoType;

46

InfoType3 := InfoType2 + 1; {to get queue numbers}

if Queue[2].NextA.FileUserPull then begin

PullWaitTime := PullWaitTime + MsgWaitTime;

PullSent := PullSent + 1;

PullAveWait := PuUWaitTime/PuUSent;

end

else begin

PushWaitTime := PushWaitTime + MsgWaitTime;

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

SentMatrix[2,InfoType3] := SentMatrix[2,InfoType3] + 1;

CountMatrix[2,InfoType3] := CountMatrix[2,InfoType3] - 1;

WaitMatrix[2,InfoType3] := WaitMatrix[2,InfoType3] +

MsgWaitTime;

AveWaitMatrix[2,InfoType3] :=

WaitMatrix[2,InfoType3]/SentMatrix[2,InfoType3];

QueuePullTime := ModelTime + MsgTime;

Queue[2].Size := Queue[2].Size - 1;

QueueLength := QueueLength - 1;

if Queue[2].NextA.Next <> nil then begin

TempPtr := Queue[2].Next;

Queue[2].Next := Queue[2].NextA.Next;

dispose(TempPtr);

TempPtr := nil;

end {if}

else if Queue[2].NextA.Next = nil then begin

dispose(Queue[2] .Next);

47

Queue [2] .Next := nil;

end;

end {if}

else if Queue[3].Size > 0 then begin

MsgSize := Queue[3].NextA.FileSize;

MsgTime := (MsgSize/DataRate);

MsgWaitTime := ModelTime - Queue[3].NextA.FileTimeEnter;

InfoType2 := Queue[3].NextA.FileInfoType;

InfoType3 := InfoType2 + 1; {to get queue numbers}

if Queue[3].NextA.FileUserPull then begin

PullWaitTime := PullWaitTime + MsgWaitTime;

PullSent := PullSent + 1;

PullAveWait := PuUWaitTime/PuUSent;

end

else begin

PushWaitTime := PushWaitTime + MsgWaitTime;

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

SentMatrix[3,InfoType3] := SentMatrix[3,InfoType3] + 1;

CountMatrix[3,InfoType3] := CountMatrix[3,InfoType3] - 1;

WaitMatrix[3,InfoType3] := WaitMatrix[3,InfoType3] +

MsgWaitTime;

AveWaitMatrix[3,InfoType3] :=

WaitMatrix[3,InfoType3]/SentMatrix[3,InfoType3];

QueuePullTime := ModelTime + MsgTime;

Queue[3].Size := Queue[3].Size - 1;

QueueLength := QueueLength - 1;

48

if Queue[3].NextA.Next <> nil then begin

TempPtr := Queue [3] .Next;

Queue[3].Next := Queue[3].NextA.Next;

dispose(TempPtr);

TempPtr := nil;

end {if}

else if Queue[3].NextA.Next = nil then begin

dispose(Queue[3] .Next);

Queue[3].Next := nil;

end;

end {if}

else if Queue[4].Size > 0 then begin

MsgSize := Queue[4].NextA.FileSize;

MsgTime := (MsgSize/DataRate);

MsgWaitTime := ModelTime - Queue[4].NextA.FileTimeEnter;

InfoType2 := Queue[4].NextA.FileInfoType;

InfoType3 := InfoType2 +1; {to get queue numbers}

if Queue[4].NextA.FileUserPull then begin

PullWaitTime := PullWaitTime + MsgWaitTime;

PullSent := PullSent + 1;

PullAveWait := PullWaitTime/PullSent;

end

else begin

PushWaitTime := PushWaitTime + MsgWaitTime;

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

SentMatrix[4,InfoType3] := SentMatrix[4,InfoType3] + 1;

49

CountMatrix[4,InfoType3] := CountMatrix[4,InfoType3] - 1;

WaitMatrix[4,InfoType3] := WaitMatrix[4,InfoType3] +

MsgWaitTime;

AveWaitMatrix[4,InfoType3] :=

WaitMatrix[4JnfoType3]/SentMatrix[4JnfoType3];

QueuePullTime := ModelTime + MsgTime;

Queue[4].Size := Queue[4].Size - 1;

QueueLength := QueueLength - 1;

if Queue[4].NextA.Next <> nil then begin

TempPtr := Queue[4].Next;

Queue[4].Next := Queue[4].NextA.Next;

dispose(TempPtr);

TempPtr := nil;

end {if}

else if Queue[4].NextA.Next = nil then begin

dispose(Queue[4].Next);

Queue[4].Next := nil;

end;

QueuePullUp := False;

end; {if}

end; {else}

end; {if}

end; {while}

for i := 1 to 4 do begin

while Queue[i].Next <> nil do begin

Ptr := Queue[i].Next;

Queue[i].Next := Queue[i].NextA.Next;

dispose(Ptr);

50

Ptr := nil;

end; {while}

end; {for}

for i := 1 to 4 do begin

for j := 1 to 14 do begin

TotalMsgSent := TotalMsgSent + SentMatrix[i,j];

TotalWaitTime := TotalWaitTime + WaitMatrix[i,j];

end; {for}

end; {for}

{writelnOQueueLength = ',QueueLength);}

TotalMsgs := QueueLength + TotalMsgSent;

PercentSent := TotalMsgSent/TotalMsgs;

PercentQueue := QueueLength/TotalMsgs;

AveWaitTime := TotalWaitTime/TotalMsgSent;

write(outfile,'1,');

write(outfile,L,7);

Write(outfile,DataRate,7);

Write(outfüe,ArrivalRatel,7);

Write(outffle,ArrivalRate2,7);

write(out£üe,ModelTime:5:3,7);

write(outfile,QueueLength,',');

write(outfile,TotalMsgSent,',');

write(outfile,AveWaitTinle:5:3;,,);

write(outfile,TotalMsgs,7);

write(outfile,PercentSent:5:3,*,');

write(outfile,PercentQueue:5:3,7);

write(outfüe,PullNumb,7);

write(outfile,PullSent,',');

51

write(outffle,PullAveWait:5:3,y);

write(outfile,PushNumb,',');

write(outfile,PushSent,',');

write(outfile,PushAveWait:5:3,7);

write(outfile,SentMatrix[l, 1],',');

write(outfile,AveWaitMatrix[1,1] :5:3,7);

write(outfile,CountMatrix[l,l],',');

write(outfile,SentMatrix[l,2],',*);

write(outfile,AveWaitMatrix[l,2]:5:3,';);

write(outfile,CountMatrix[l,2],7);

write(outffle,SentMatrix[l,3],7);

write(outffle,AveWaitMatrix[l,3]:5:3,7);

write(outfile,CountMatrix[l,3],',');

write(outfile,SentMatrix[1,4],',');

write(outiile,AveWaitMatrix[l,4]:5:3,7);

write(outfile,CountMatrix[1,4],',');

write(outfile,SentMatrix[l,5],7);

write(outfile,AveWaitMatlix[l,5]:5:3,,,,);

write(outfile,CountMatrix[l,5],',');

write(outfile,SentMatrix[l,6],',');

write(outfile,AveWaitMatrix[l,6]:5:3,';);

write(out£ile,CountMatrix[l,6],,,,);

write(outfile,SentMatrix[l,7],7);

write(outfile,AveWaitMatrix[l,7]:5:3/,');

write(outfile,CountMatrix[l,7],V);

write(outfile,SentMatrix[l,8],',');

write(out£Qe,AveWaitMatrix[l,8]:5:3,',');

write(outfile,CountMatrix[l,8],',');

52

write(outffle,SentMatrix[l,9],7);

write(outme,AveWaitMatrix[l,9]:5:3,7);

write(outfile,CountMatrix[l,9],',');

write(outfile,SentMatrix[l, 10],7);

write(outfile,AveWaitMatrix[l,10]:5:3,'/);

write(outfile,CountMatrix[l,10],',');

write(outfile,SentMatrix[l, 11],',');

write(out£le,AveWaitMatrix[l, 11]:5:3,*,');

write(outfile,CountMatrix[l, 11],',');

write(outfile,SentMatrix[l, 12],',');

write(outffleAveWaitMatrix[l,12]:5:3,7);

write(outfile,CountMatrix[l, 12],',');

write(outfile,SentMatrix[l, 13],',');

write(outffle,AveWaitMatrix[l,13]:5:3,*,*);

write(outfile,CountMatrix[l, 13],',');

write(outfile,SentMatrix[1,14],',');

write(outfile,AveWaitMatrix[l, 14] :5:3,',');

write(outfile,CountMatrix[1,14],',');

write(outfile,SentMatrix[2,1],',');

write(outfile,AveWaitMatrix[2,l]:5:3,',');

write(outfile,CountMatrix[2,1],',');

write(outfile,SentMatrix[2,2],7);

write(outfile,AveWaitMatrix[2,2]:5:3,',');

write(outfile,CountMatrix[2,2],',');

write(outfile,SentMatrix[2,3],7);

write(ou1ffle,AveWaitMatrix[2,3]:5:3,7);

write(outfile,CountMatrix[2,3],7);

write(outfile,SentMatrix[2,4],',');

53

write(outfile,AveWaitMatrix[2,4]:5:3,',');

write(outfile,CountMatrix[2,4],',');

write(outfüe,SentMatrix[2,5],',');

write(outfile,AveWaitMatrix[2,5]:5:3,,,r);

write(outfile,CountMatrix[2,5],',');

write(outfile,SentMatrix[2,6],',');

write(outffle,AveWaitMatrix[2,6]:5:3,',');

write(outfile,CountMatrix[2,6],',');

write(outMe,SentMatrix[2,7],',');

write(outffle,AveWaitMatrix[2,7]:5:3,',');

write(outfile,CountMatrix[2,7],',");

write(outfile,SentMatrix[2,8],*,');

write(outfile,AveWaitMatrix[2,8]:5:3,',');

write(outffle,CountMatrix[2,8],',');

write(outfile,SentMatrix[2,9],',');

write(outfile,AveWaitMatrix[2,9]:5:3,',');

write(outfile,CountMatrix[2,9],',');

write(outfile,SentMatrix[2,10]/,');

write(outfile,AveWaitMatrix[2,10]:5:3/,');

write(outfile,CountMatrix[2,10],',*);

write(outffle,SentMatrix[2,ll],',');

write(outffle,AveWaitMatrix[2,11]:5:3,7);

write(outfile,CountMatrix[2,11],',');

write(outfile,SentMatrix[2,12],',');

write(outfile,AveWaitMatrix[2,12]:5:3,',');

write(outfile,CountMatrix[2,12],',');

write(outfile,SentMatrix[2,13],',');

write(outfile,AveWaitMatrix[2,13] :5:3,',');

54

write(outfile,CountMatrix[2,13],',');

write(outfile,SentMatrix[2,14],',');

write(outfile,AveWaitMatrix[2,14]:5:3,,)');

write(out£Qe,CountMatrix[2,14],',');

write(outfile,SentMatrix[3,1],',');

write(out£üe,AveWaitMatrix[3,l]:5:3,7);

write(outfile,CountMatrix[3,1],',');

write(outfile,SentMatrix[3,2],',*);

write(outfile,AveWaitMatrix[3,2]:5:3,',');

write(outfQe,CountMatrix[3,2],',');

write(outfile,SentMatrix[3,3],',');

write(outme,AveWaitMatrix[3,3]:5:3,7);

write(outfile,CountMatrix[3,3],',');

write(out£Qe,SentMatrix[3,4],',*);

write(outfile,AveWaitMatrix[3,4]:5:3,',');

write(outfile,CountMatrix[3,4],',*);

write(outfile,SentMatrix[3,5],',');

write(outfile,AveWaitMatrix[3,5]:5:3,',');

write(outfile,CountMatrix[3,5],7);

write(outfüe,SentMatrix[3,6],7);

write(outfile,AveWaitMatrix[3,6]:5:3,',');

write(outfile, CountMatrix[3,6],', *);

write(outfüe,SentMatrix[3,7],7);

write(outffle,AveWaitMatrix[3,7]:5:3,7);

write(outfile,CountMatrix[3,7],',,);

write(outfile,SentMatrix[3,8],',');

write(outfile,AveWaitMatrix[3,8]:5:3,',');

write(outfüe,CountMatrix[3,8],7);

55

write(outffle,SentMatrix[3,9],7);

write(outffle,AveWaitMatrix[3,9]:5:3,7);

write(outfile,CountMatrix[3,9],',');

write(outfile,SentMatrix[3,10],',');

write(outfLle,AveWaitMatrix[3,10]:5:3,^,);

write(outfile,CountMatrix[3,10],',');

write(outfile,SentMatrix[3,11],7);

write(outfile,AveWaitMatrix[3,11]:5:3,7);

write(outfile,CountMatrix[3,11],',');

write(outfile,SentMatrix[3,12],',*);

write(outJfile,AveWaitMatrix[3,12] :5:3,7);

write(outfile,CountMatrix[3,12],',');

write(outfile,SentMatrix[3,13],7);

write(outMe,AveWaitMatrix[3,13]:5:3,7);

write(outfile,CountMatrix[3,13],',');

write(outfile,SentMatrix[3,14],',');

write(outffle,AveWaitMatrix[3,14]:5:3,7);

write(out£ile,CountMatrix[3,14],',');

write(outfile,SentMatrix[4,1],7);

write(outfile,AveWaitMatrix[4,l]:5:3,',');

write(outfile,CountMatrix[4,1],',');

write(outffle3entMatrix[4,2],7);

write(outfile,AveWaitMatrix[4,2]:5:3;,');

write(outfile,CountMatrix[4,2],7);

write(outfile3SentMatrix[4,3],7);

write(outfile,AveWaitMatrix[4,3]:5:3,',');

write(outffle,CountMatrix[4,3],7);

write(outfile,SentMatrix[4,4],7);

56

write(outfile,AveWaitMatrix[4,4]:5:3,y);

write(outfile, CountMatrix[4,4],',*)',

write(outfile,SentMatrix[4,5],',');

write(outfile,AveWaitMatrix[4,5]:5:3,',');

write(outfUe,CountMatrix[4,5],',');

write(outfile,SentMatrix[4,6],',');

write(outfile,AveWaitMatrix[4,6]:5:3,',');

write(outfile,CountMatrix[4,6],',');

write(outfile,SentMatrix[4,7],',');

write(outfile,AveWaitMatrix[4,7]:5:3,',');

write(outJ51e,CountMatrix[4,7],',');

write(outfile,SentMatrix[4,8],',');

write(outfile,AveWaitMatrix[4,8]:5:3,',');

write(outfüe,CountMatrix[4,8],',');

write(outfile,SentMatrix[4,9],',');

write(outffle,AveWaitMatrix[4,9]:5:3,',');

write(outfUe,CountMatrix[4,9],',');

write(outfile,SentMatrix[4,10],',');

write(outme,AveWaitMatrix[4,10]:5:3,',');

write(outfile,CountMatrix[4,10],',');

write(outfile,SentMatrix[4,11],',');

write(outffle,AveWaitMatrix[4,113:5:3,',');

write(outfile,CountMatrix[4,11],*,');

write(outfile,SentMatrix[4,12],',');

write(outfile,AveWaitMatrix[4,12] :5:3,',');

write(outfile,CountMatrix[4,12],',');

write(outfile,SentMatrix[4,13],',');

write(outfile,AveWaitMatrix[4,13]:5:3,',');

57

write(outfile,CountMatrix[4,13],',');

write(out£Qe,SentMatrix[4,14],',*);

write(outfile,AveWaitMatrix[4,14]:5:3,',');

writeln(outfile,CountMatrix[4,14],',');

end; {Prioritize3}

begin

end. {Thesis 1}

58

APPENDIX B: COMMUNICATION NODE MODEL WITH
ALGORITHM TWO

{Chris Halton

Thesis2 Algorithm w/ Model and Matrix Counters

Last updated: 13 Aug 94}

unit THESIS2C;

interface

procedure PRIORITIZE(L : integer; var outfile : text);

implementation

procedure PRIORITIZE(L : integer; var outfile : text);

type FilePOINT = AFileTYPE;

FileTYPE = record

FilelnfoPriority: integer;

FilelnfoType: integer;

FileUserPull: boolean;

FileSize : integer;

FileTimeEnter: real;

Next: FilePOINT

end;

QueueRECORD = record

Full: boolean;

PrevNum : integer;

NextNum : integer;

Next: FilePOINT

end;

AveWaitTYPE = axray[1..4,1..15] of real;

59

WaitTYPE = array[1..4,1..15] of real;

SentTYPE = array[1..4,1..15] of integer;

CountTYPE = array[1..4,1..15] of integer;

QueueTYPE = array[1..2200] of QueueRECORD;

var Queue : QueueTYPE;

MsgAveWaitMatrix: Ave WaitTYPE;

MsgWaitMatrix: WaitTYPE;

MsgSentMatrix: SentTYPE;

CountMatrix: CountTYPE;

QueueLength, MsgSent, PushNumb, PushSent, PullNumb, PullSent,

TotalMsg, Counter: longint;

InfoPriority, Size, Sizel, UserPull, UserPull2, Priority,

NumRate, QueueBegin, QueueTemp, MsgSize, TempInfoPri, Temp,
InfoType,

TempSize, QueuePtr, i, j, K, Temp2, QueueEnd, InfoTemp,

PriTemp, InfoTemp2, PriTemp2, InfoTemp3, PriTemp3, InfoTemp4,
PriTemp4,

InfoTemp 1, PriTemp 1, TempInfoType, Size2 : integer;

QueueReDoUp, QueuePullUp, MsgUp, MsglUp, Msg2Up, MsgUpl,
MsgUp2,

PuUTest, TempUsePuU: boolean;

NextTimeStep, TempTime, HoldTime, ModelTime, AveWait,

AveQueueTime,

QueueWaitTime, MsgWaitTime, MsglTime, Msg2Time,

QueueReDoTime,

QueuePuUTime, MsglRN, Msg2RN, MsgTime, PuUWaitTime,

PullAveWait,

60

PushWaitTime, PushAveWait, PercentSent, PercentQueue, TempAve

: real;

TempPtr,TempPtr2, Ptr: FilePOINT;

const DataKate = 57895;

ArrivalRatel = 50;

ArrivalRate2 = 5;

procedure MsgGenl (ModelTime : real; var MsgOneTime : real);

begin

MsglRN := SYSTEM.Random;

MsgOneTime :=ModelTime - ((l/ArrivalRatel)*ln(MsglRN));

end;

procedure MsgGen2(ModelTinie : real; var MsgTwoTime : real);

begin

Msg2RN := SYSTEM.Random;

MsgTwoTime := ModelTime - ((l/ArrivalRate2)*ln(Msg2RN));

end;

procedure QueueReDoTimeGen(ModelTime : real; var QueueReDoTime :

real);

begin

QueueReDoTime := ModelTime + 5.0;

end;

procedure NumericalOrder(NRate : integer; var QBegin, QEnd : integer;

var Queue2 : QueueTYPE);

var QTemp : integer;

begin

if QBegin = QEnd then begin

if NRate < QBegin then begin

Queue2[NRate].NextNum := QBegin;

61

Queue2 [QBegin] .PrevNum :=NRate;

QBegin := NRate;

end {if}

else if QEnd < NRate then begin

Queue2[QEnd].NextNum := NRate;

Queue2[NRate].PrevNum := QEnd;

QEnd := NRate;

end; {else if}

end {if}

else if QBegin <> QEnd then begin

if (QBegin = 0) and (QEnd = maxint) then begin

QBegin := NRate;

QEnd := NRate;

end {if}

else if NRate < QBegin then begin

Queue2[NRate].NextNum := QBegin;

Queue2[QBegin].PrevNum := NRate;

QBegin := NRate;

end {if}

else if QEnd < NRate then begin

Queue2 [QEnd] .NextNum := NRate;

Queue2[NRate].PrevNum := QEnd;

QEnd := NRate;

end {else if}

else if (QBegin < NRate) and (NRate < QEnd) then begin

QTemp := QBegin;

while Queue2[QTemp].NextNum < NRate do begin

QTemp := Queue2[QTemp].NextNum;

62

end; {while}

Queue2[NRate].NextNum := Queue2[QTemp].NextNum;

Queue2[NRate].PrevNum := QTemp;

Queue2[QTemp].NextNum := NRate;

Queue2[Queue2[NRate].NextNum].PrevNum := NRate;

end; {else if}

end; {else if}

end; {Numerical Order}

procedure QueueFullFalse(var Queue 1 : QueueTYPE; NumRat: integer;

var QlBegin, QlEnd : integer; IPriority,

IType : integer; UPull: boolean;

Size3 : integer; MTime : real);

begin

new(Queue 1 [NumRat] .Next);

Queue 1 [NumRat].NextA.FileInfoPriority := IPriority;

Queuel[NumRat].NextA.FileInfoType := IType;

Queuel[NumRat].NextA.FileUserPull := UPull;

Queuel[NumRat].NextA.FileSize := Size3;

Queue 1 [NumRat].NextA.FileTimeEnter := MTime;

Queuel[NumRat].NextA.Next := nil;

Queue 1 [NumRat] .Full := True;

NumericalOrder(NumRat,Q lBegin,Q lEnd,Queue 1);

end; {QueueFuUFalse}

procedure QueueFullTrue(NumRatel : integer; var Queue3 :

QueueTYPE;

IPri, InfoTy : integer; UserP : boolean;

Size4 : integer; ModTime : real);

63

var Ptrl : FilePoint;

begin

Ptrl := Queue3[NumRatel].Next;

while PtrlA.Next <> nil do begin

Ptrl := PtrlA.Next;

end; {while}

new (PtrlA.Next);

Ptrl:=PtrlA.Next;

PtrlA.FileInfoPriority := IPri;

PtrlA.FileInfoType := InfoTy;

PtrlA.FileUserPull := UserP;

PtrlA.FileSize := Size4;

PtrlA.FüeTimeEnter := ModTime;

PtrlA.Next:=nil;

end; {else}

begin

for i := 1 to 2200 do begin

Queue[i].PrevNum := 0;

Queue[i].NextNum :=0;

Queue[i].Full := False;

Queue[i].Next := nil;

end; {for}

for i := 1 to 4 do begin

for j:= 1 to 15 do begin

MsgAveWaitMatrix[i,j] := 0.0;

MsgWaitMatrix[i,j] := 0.0;

MsgSentMatrixfij] := 0;

CountMatrix[i,j] := 0;

64

end; {for}

end; {for}

Randomize;

ModelTime := 0.0;

NextTimeStep := 0.0;

QueueLength := 0;

QueuePullTime := 0.0;

QueueBegin := 0;

QueueEnd := maxint;

Size := 0;

Sizel := 0;

Size2 := 0;

InfoPriority := 0;

InfoType := 0;

UserPuU := 0;

UserPuU2 := 0;

InfoTemp := 0;

PriTemp := 0;

InfoTemp 1 := 0;

PriTemp2 := 0;

InfoTemp2 := 0;

PriTemp2 := 0;

InfoTemp3 := 0;

PriTemp3 := 0;

InfoTemp4 := 0;

PriTemp4 := 0;

TempAve := 0.0;

Priority := 0;

65

MsgSent := 0;

AveWait := 0.0;

TotalMsg := 0;

PullNumb := 0;

PullSent := 0;

PullWaitTime := 0.0;

PullAveWait := 0.0;

PushNumb := 0;

PushSent := 0;

PushWaitTime := 0.0;

PushAveWait := 0.0;

PercentSent := 0.0;

PercentQueue := 0.0;

QueueWaitTime := 0.0;

MsgGen l(ModelTime,MsglTime);

MsgGen2(ModelTune,Msg2Time);

QueueReDoTiineGeii(ModelTime,QueueReDoTime);

Counter := 0;

while (ModelTime < 1000.0) and (QueueLength < 10000) and (Counter

<200000) do begin

{writeln('Start *);}

MsgUp := False;

MsglUp := False;

Msg2Up := False;

MsgUpl —False;

MsgUp2 := False;

QueueReDoUp := False;

QueuePullUp := False;

66

begin

if (MsglTime >= ModelTime) and (Msg2Time >= ModelTime) and

(MsglTime < Msg2Tinie) then begin

NextTimeStep := MsglTime;

end {if}

else if(MsglTime >= ModelTime) and (Msg2Time >= ModelTime) and

(Msg2Time < MsglTime) then begin

NextTimeStep := Msg2Time

end {else}

else if (MsglTime >= ModelTime) and (Msg2Time < ModelTime) then

NextTimeStep := MsglTime;

end {else if}

else if (MsglTime < ModelTime) and (Msg2Time >= ModelTime) then

begin

NextTimeStep := Msg2Time

end; {else if}

if (QueueReDoTime >= ModelTime) and (QueueReDoTime <

NextTimeStep)

then begin

NextTimeStep := QueueReDoTime

end; {if}

if (QueuePullTime <> 0.0) then begin

if (QueuePullTime > ModelTime) and (QueuePullTime <

NextTimeStep)

then begin

NextTimeStep := QueuePullTime

end; {if}

67

end; {if}

if (NextTimeStep = MsglTime) then begin

MsglUp := True

end; {if}

if (NextTimeStep = Msg2Time) then begin

Msg2Up := True

end; {if}

if (NextTimeStep = QueueReDoTime) then begin

QueueReDoUp := True

end; {if}

if (NextTimeStep = QueuePullTime) then begin

QueuePullUp := True

end; {if}

ModelTime —NextTimeStep;

if MsglUp then begin

{writelnC Msgl Up ',ModelTime:5:3);}

InfoPriority := Random(4);

InfoType := Random(14);

Sizel := Random(2000);

Size := Sizel + 1;

UserPull := Random(4);

if (UserPull = 0) then begin

PullNumb := PullNumb + 1;

PullTest := True;

end

else begin

PushNumb := PushNumb + 1;

PullTest := False;

68

end;

InfoTemp2 := InfoType + 1; {to get queue numbering}

PriTemp2 := InfoPriority +1; {to get queue numbering}

CountMatrix[PriTemp2,InfoTemp2] :=

CountMatrix[PriTemp2,InfoTemp2] + 1;

if (QueueLength = 0) and (QueuePullTime <= ModelTime) then

begin

QueuePullUp := True;

QueuePullTime := ModelTime;

MsgUp := True;

end {if}

else begin {place in queue}

Priority := InfoPriority + Size + InfoType;

if PullTest then begin

if Priority > 30 then begin

Priority := Priority - 30;

end {if}

else begin

Priority := 0

end; {else}

end; {if}

NumRate := Priority +1; {to adjust to queue numbers}

if Queue[NumRate].Full = False then begin

QueueFuUFalse(Queue,NumRate,QueueBegin, QueueEnd,

InfoPriority, InfoType, PullTest, Size,

ModelTime);

end {if}

else if (Queue[NumRate].Full = True) then begin

69

QueueFuUTrue(NumRate,QueueJnfoPriority,InfoType,

PullTest,Size,ModelTime);

end; {else}

QueueLength := QueueLength + 1;

end; {else}

MsglUp := False;

MsgGen l(ModelTime,MsglTime);

end; {if}

if Msg2Up then begin

{writelnO Msg2Up ',ModelTime:5:3);}

InfoPriority := Random(4);

InfoType := Random(14);

Size2 := Random(2000);

Size := Size2 + 1;

UserPuH := Random(4);

if (UserPuH = 3) then begin

PushNumb := PushNumb + 1;

PullTest := False;

end

else begin

PullNumb := PullNumb + 1;

PuUTest := True;

end;

InfoTemp2 := InfoType +1; {to get queue numbering}

PriTemp2 := InfoPriority +1; {to get queue numbering}

CountMatrix[PriTemp2,InfoTemp2] :=

CountMatrix[PriTemp2,InfoTemp2] + 1;

70

if (QueueLength = 0) and (QueuePullTime <= ModelTime) and

(not QueuePullUp) then begin

QueuePuUUp := True;

QueuePullTime := ModelTime;

MsgUp := True;

end {if}

else begin {place in queue}

Priority := InfoPriority + Size + InfoType;

if PullTest then begin

if Priority > 30 then begin

Priority := Priority - 30;

end {if}

else begin

Priority := 0

end; {else}

end; {if}

NumRate := Priority + 1; {to adjust to queue numbers}

if Queue[NumRate].Full = False then begin

QueueFullFalse(Queue,NumRate,QueueBegin, QueueEnd,

InfoPriority, InfoType, PullTest, Size,

ModelTime);

end {if}

else if (Queue[NumRate].Full = True) then begin

QueueFullTrue(NumRate,Queue,InfoPriority,InfoType,

PullTest,Size,ModelTime);

end; {else if}

QueueLength := QueueLength + 1;

71

end; {else}

Msg2Up := False;

MsgGen2(ModelTime,Msg2Time);

end; {if}

if QueuePullUp and (QueueLength > 0) then begin

{writelnCQueue Pull Up with QL > 0 ',ModelTime:5:3);}

MsgSize := Queue[QueueBegin].NextA.FileSize;

MsgTime := (MsgSize/DataRate);

QueuePullTime := ModelTime + MsgTime;

MsgSent := MsgSent + 1;

InfoTemp := Queue[QueueBegin].NextA.FileInfoType;

InfoTemp2 := InfoTemp + 1; {to get queue numbering}

PriTemp := Queue[QueueBegin].NextA.FileInfoPriority;

PriTemp2 := PriTemp +1; {to queue numbering}

MsgSentMatrix[PriTemp2,InfoTemp2] :=

MsgSentMatrix[PriTemp2,InfoTemp2]

+ i;

CountMatrix[PriTemp2,InfoTemp2] :=

CountMatrix[PriTemp2,InfoTemp2] - 1;

MsgWaitTime := ModelTime -

Queue[QueueBegin] .NextA .FileTimeEnter;

if Queue[QueueBegin].NextA.FileUserPull then begin

PuUWaitTime := PuUWaitTime + MsgWaitTime;

PullSent := PullSent + 1;

PullAveWait := PullWaitTime/PullSent;

end

else begin

PushWaitTime := PushWaitTime + MsgWaitTime;

72

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

QueueWaitTime := QueueWaitTime + MsgWaitTime;

MsgWaitMatrix[PriTemp2,InfoTemp2] :=

MsgWaitMatrix[PriTemp2JnfoTemp2]

+ MsgWaitTime;

Ave Wait := Queue WaitTime/MsgSent;

TempAve := MsgWaitMatrix[PriTemp2,InfoTemp2]/

(MsgSentMatrix[PriTemp2,InfoTemp2]);

MsgAveWaitMatrix[PriTemp2,InfoTemp2] := TempAve;

QueueLength := QueueLength - 1;

if QueueLength > 0 then begin

if (Queue[QueueBegin].NextA.Next = nil) then begin

Queue[QueueBegin].Full := False;

dispose(Queue[QueueBegin] .Next);

Queue[QueueBegin].Next := nil;

Temp := Queue[QueueBegin].NextNum;

Queue [QueueBegin] .NextNum := 0;

QueueBegin := Temp;

Queue [QueueBegin] .PrevNum := 0;

end {if}

else if (QueuefQueueBegin].NextA.Next <> nil) then begin

TempPtr := QueuefQueueBegin].Next;

QueuefQueueBegin].Next := Queue[QueueBeginJ.Next A.Next;

dispose(TempPtr);

TempPtr := nil;

end; {else if}

73

end {if}

else if QueueLength = 0 then begin

Queue[QueueBegin].Full := False;

dispose(Queue [QueueBegin] .Next);

Queue[QueueBegin].Next := nil;

Queue[QueueBegin].PrevNum := 0;

Queue[QueueBegin].NextNum := 0;

QueueBegin := 0;

QueueEnd := maxint;

end; {else if}

QueuePullUp := False;

end {if}

else if QueuePullUp and MsgUp and (QueueLength = 0) then begin

{writelnC QueuePullUp and QL = 0 MVEodelTimeiörS);}

MsgTLme := Size/DataKate;

QueuePullTime := ModelTime + MsgTime;

MsgSent := MsgSent + 1;

InfoTemp2 := InfoType + 1;

PriTemp2 := InfoPriority + 1;

AveWait := QueueWaitTime/MsgSent;

if PullTest then begin

PullSent := PullSent + l;

PullAveWait := PullWaitTime/PullSent;

end

else begin

PushSent := PushSent + 1;

PushAveWait := PushWaitTime/PushSent;

end;

74

MsgSentMatrix[PriTemp2,InfoTemp2] :=

MsgSentMatrix[PriTemp2,InfoTemp2]

+ i;
TempAve := MsgWaitMatrix[PriTemp2,InfoTemp2]/

(MsgSentMatrix[PriTemp2,InfoTemp2]);

MsgAveWaitMatrix[PriTemp2,InfoTemp2] := TempAve;

CountMatrix[PriTemp2,InfoTemp2] :=

CountMatrix[PriTemp2,InfoTemp2] - 1;

QueuePullUp := False;

MsgUp := False;

end {else}

else if QueuePullUp and not(MsgUp) and (QueueLength = 0) then

begin

QueuePullUp := False;

end; {else}

if QueueReDoUp and (QueueLength > 0) then begin

{writelnCQueueRe Do Up \QueueLength,' ',ModelTime:5:3);}

QueuePtr := QueueBegin;

while QueuePtr <> QueueEnd do begin

TempInfoPri := Queue[QueuePtr].NextA.FileInfoPriority;

TempInfoType := Queue[QueuePtr].NextA.FileInfoType;

TempUsePull := Queue[QueuePtr].NextA.FileUserPull;

TempSize := Queue[QueuePtr].NextA.FileSize;

TempTime := Queue[QueuePtr].NextA.FileTimeEnter;

HoldTime := ModelTime - TempTime;

if Queue[QueuePtr].NextA.Next <> nil then begin

TempPtr2 := Queue [QueuePtr]. NextA. Next;

dispose(Queue[QueuePtr] .Next);

75

Queue [QueuePtr] .Next := nil;

Queue [QueuePtr] .Next := TempPtr2;

end

else if Queue[QueuePtr].NextA.Next = nil then begin

dispose(Queue[QueuePtr].Next);

Queue[QueuePtr].Next := nil;

Temp := Queue[QueuePtr].NextNum;

Temp2 := Queue[QueuePtr].PrevNum;

Queue[Temp2].NextNum := Queue[QueuePtr].NextNum;

Queue[Temp].PrevNum := Queue[QueuePtr].PrevNum;

Queue[QueuePtr].PrevNum := 0;

Queue[QueuePtr].NextNum := 0;

Queue[QueuePtr].Full := False;

if QueueBegin = QueuePtr then begin

QueueBegin := Temp;

end;

QueuePtr := Temp;

end; {else}

Priority := TempInfoPri + TempSize + TempInfoType;

if (TempUsePull = True) then begin

if Priority > 30 then begin

Priority := Priority - 30;

end {if}

else begin

Priority := 0

end; {else}

end; {if}

if HoldTime <= 3.0 then begin

76

if Priority > 5 then begin

Priority := Priority - 5;

end {if}

else begin

Priority := 0

end; {else}

end {if}

else if (3.0 < HoldTime) and (HoldTime <= 9.0) then begin

if Priority > 20 then begin

Priority := Priority - 20;

end {if}

else begin

Priority := 0

end; {else}

end {else if}

else if (9.0 < HoldTime) and (HoldTime <= 15.0) then begin

if Priority > 40 then begin

Priority := Priority - 40;

end {if}

else begin

Priority :=0

end; {else}

end {else if}

else if 15.0 < HoldTime then begin

if Priority > 60 then begin

Priority := Priority - 60;

end {if}

else begin

77

Priority := 0

end; {else}

end; {else if}

NumRate := Priority +1; {to adjust to queue numbers}

if NumRate = QueuePtr then begin

NumRate := NumRate - 1;

end;

if Queue[NumRate].Full = False then begin

QueueFullFalse(Queue,NumRate,QueueBegin, QueueEnd,

TempInfoPri,TempInfoType,TempUsePull, TempSize,

TempTime);

end {if}

else if (Queue[NumRate].Full =. True) then begin

QueueFullTrue(NumRate,Queue,TempInfoPri,TempInfoType,

TempUsePull,TempSize,TempTime);

end; {else if}

end; {while}

QueueReDoUp := False;

QueueReDoTimeGen(ModelTime,QueueReDoTime);

end; {if}

if QueueReDoUp and (QueueLength = 0) then begin

QueueReDoUp := False;

QueueReDoTimeGen(ModelTime,QueueReDoTime);

end; {if}

Counter := Counter + 1;

{writeln('Counter equals ',Counter,'ModelTime is ',ModelTime);}

end; {while}

78

if QueueLength > 0 then begin

Temp := QueueBegin;

while Queue [Temp].NextNum <> 0 do begin

while Queue[Temp].Next <> nil do begin

Ptr := Queue[Temp].NextA.Next;

dispose(Queue[Temp] .Next);

Queue [Temp] .Next := Ptr;

Ptr := nil;

end; {while}

Temp :=Queue[Temp].NextNum;

end; {while}

while Queue[Temp].Next <> nil do begin

Ptr := Queue[Temp].Next;

Queue[Temp].Next := Queue[Temp].NextA.Next;

dispose(Ptr);

Ptr := nil;

end; {while}

end; {if}

TotalMsg := QueueLength + MsgSent;

PercentSent := MsgSent/TotalMsg;

PercentQueue := QueueLength/TotalMsg;

write(outfile, '2,');

write(outfile,L,7);

write(outfile,DataRate,7);

write(outfile, ArrivalRate 1,7);

write(outfüe,ArrivalRate2,',');

Write(outMe,ModelTime:5:3,7);

Write(outfile,QueueLength,7);

79

Write(outfile,MsgSent,7);

Write(outfile,AveWait:5:3,7);

write(outfile,TotalMsg,', *);

write(outfile,PercentSent:5:3,'/);

write(outfile,PercentQueue:5:3,*,');

write(out£üe,PullNumb,7);

write(outfile,PullSent,7);

write(outffle,PullAveWait:5:3,7);

write(outfile,PushNumb,',');

write(outfile,PushSent,',');

write(outfile,PushAveWait:5:3,',');

write(outfile,MsgSentMatrix[1,1],', *);

write(outfile,MsgAveWaitMatrix[l,l]:5:3,7);

write(outfile,CountMatrix[l, 1],',*);

write(outfile,MsgSentMatrix[l,2],7);

write(outfLLe,MsgAveWaitMatrix[l,2]:5:3,7);

write(outme,CountMatrix[l,2],7);

write(outffle,MsgSentMatrix[l,3],7);

write(outfile,MsgAveWaitMatrix[l,3]:5:3,',');

write(outffle,CountMatrix[l,3],7);

write(outfile,MsgSentMatrix[1,4],',');

write(outfüe,MsgAveWaitMatrix[l,4]:5:3,7);

write(outfile,CountMatrix[l,4],V);

write(outfile,MsgSentMatrix[1,5],',');

write(outfile,MsgAveWaitMatrix[l,5]:5:3,',');

write(outfile5CountMatrix[l,5],',*);

write(outfile,MsgSentMatrix[l,6],',');

write(outfileJV[sgAveWaitMatrix[l,6]:5:3,7);

80

write(outfile, CountMatrix[1,6],',');

write(outfile,MsgSentMatrix[l,7],',');

write(outfile,MsgAveWaitMatrix[l,7]:5:3,',');

write(outfile, CountMatrix[1,7],', ');

write(outfile,MsgSentMatrix[l,8],',');

write(outfüe,MsgAveWaitMatrix[l,8]:5:3,',');

write(outfile,CountMatrix[l,8],7);

write(outfile,MsgSentMatrix[l,9],',');

write(outfile,MsgAveWaitMatrix[l,9]:5:3,',');

write(outfile,CountMatrix[1,9],',');

write(outfile,MsgSentMatrix[l,10],',');

write(out£üe,MsgAveWaitMatrix[l,10]:5:3,7);

write(outfile,CountMatrix[l, 10],',');

write(outfile,MsgSentMatrix[l, 11],',');

write(outfile,MsgAveWaitMatrix[l, 11]:5:3,',');

write(outfile,CountMatrix[l, 11],',*);

write(outfile,MsgSentMatrix[l,12],7);

write(outfile,MsgAveWaitMatrix[l,12]:5:3,,,,);

write(outfile,CountMatrix[l, 12],',');

write(outfile,MsgSentMatrix[l, 13],',');

write(outfile,MsgAveWaitMatrix[l,13]:5:3,',');

write(outfile,CountMatrix[l, 13],',');

write(out£Qe,MsgSentMatrix[l,14],',');

write(outfile,MsgAveWaitMatrix[l,14]:5:3,',');

write(outfile,CountMatrix[l, 14],',');

write(outfile,MsgSentMatrix[2,l],',');

write(outfile,MsgAveWaitMatrix[2,l]:5:3,',');

write(outfile,CountMatrix[2,1],',');

81

write(out£üe,MsgSentMatrix[2,2],7);

write(outfile,MsgAveWaitMatrix[2,2]:5:3,*,');

write(outfile,CountMatrix[2,2]5',');

write(outfile,MsgSentMatrix[2,3],*,');

write(outfne,MsgAveWaitMatrix[2,3]:5:3,7);

write(outfile,CountMatrix[2,3],',');

write(outfile,MsgSentMatrix[2,4],V);

write(out£Ue,MsgAveWaitMatrix[2,4]:5:3,7);

write(outfile,CountMatrix[2,4],',');

write(outfile,MsgSentMatrix[2,5],',');

write(outffle,MsgAveWaitMatrix[2,5]:5:3,7);

write(outfile,CountMatrix[2,5],',');

write(outfile,MsgSentMatrix[2,6],7);

write(out£Qe,MsgAveWaitMatrix[2,6]:5:3,',');

write(outffle,CountMatrix[2,6],7);

write(out£üeJMsgSentMatrix[2,7],7);

write(out£Qe,MsgAveWaitMatrix[2,7]:5:3,',');

write(outfile,CountMatrix[2,7],',');

write(outfile,MsgSentMatrix[2,8],',');

write(outfile,MsgAveWaitMatrix[2,8]:5:3,';);

write(outfile,CountMatrix[2,8],',');

write(outfQe,MsgSentMatrix[2,9],*,');

write(outfile,MsgAveWaitMatrix[2,9]:5:3,',');

write(outfUe,CountMatrix[2,9],7);

write(outffle31sgSentMatrix[2,10],7);

write(out£Qe,MsgAveWaitMatrix[2,10]:5:3,',');

write(outfile,CountMatrix[2,10],',');

write(outfile,MsgSentMatrix[2,11],',');

82

write(outfile,MsgAveWaitMatrix[2,11]:5:3,7);

write(outfile,CountMatrix[2,11] ,*,');

write(outffle,MsgSentMatrix[2,12],7);

write(outffle3£sgAveWaitMatrix[242]:5:3/,');

write(out£ile,CountMatrix[2,12],',');

write(outfile,MsgSentMatrix[2,13],',');

write(outfile,MsgAveWaitMatrix[2,13]:5:3,',');

write(outfile,CountMatrix[2,13],*,');

write(outfiLe;MsgSentMatrix[2,14],y);

write(outfUe,MsgAveWaitMatrix[2,14] :5:3,7);

write(outfile,CountMatrix[2,14],',');

write(outfile,MsgSentMatrix[3,1],7);

write(outfile,MsgAveWaitMatrix[3,l]:5:3,',');

write(outfile,CountMatrix[3,1],',');

write(outfile,MsgSentMatrix[3,2],',*);

write(outfile,MsgAveWaitMatrix[3,2]:5:3,',');

write(outfile,CountMatrix[3,2],',');

write(outfile,MsgSentMatrix[3,3],',');

write(outfile,MsgAveWaitMatrix[3,3]:5:3,',');

write(outfile,CountMatrix[3,3],',');

write(out£LLeJ\lsgSentMatrix[3,4],7);

write(outfile,MsgAveWaitMatrix[3,4]:5:3;,*);

write(outfile,CountMatrix[3,4],7);

write(outfüe,MsgSentMatrix[3,5],7);

write(outfile,MsgAveWaitMatrix[3,5]:5:3,',');

write(outfüe,CountMatrix[3,5],7);

write(outfile,MsgSentMatrix[3,6];,');

write(outffle;MsgAveWaitMatrix[3,6]:5:3,7);

83

write(outfile,CountMatrix[3,6],7);

write(outfüe,MsgSentMatrix[3,7],7);

write(out£ile,MsgAveWaitMatrix[3,7]:5:3,',');

write(outfQe,CountMatrix[3,7],',');

write(outfile,MsgSentMatrix[3,8],7);

write(outffle3£sgAveWaitMatrix[3,8]:5:3,7);

write(outffle,CountMatrix[3,8],7);

write(outffle,MsgSentMatrix[3,9],7);

write(outffleJMsgAveWaitMatrix[3,9]:5:3,7);

write(outfile,CountMatrix[3,9],',');

write(outfile,MsgSentMatrix[3,10],',');

write(outffle,MsgAveWaitMatrix[3,10]:5:3,7);

write(outfile,CountMatrix[3,10],',');

write(outfile,MsgSentMatrix[3,11],',');

write(outfile,MsgAveWaitMatrix[3,11] :5:3,',');

write(outfile,CountMatrix[3,11],',');

write(outfile,MsgSentMatrix[3,12],7);

write(outfte,MsgAveWaitMatrix[3,12]:5:3,7);

write(outfile,CountMatrix[3,12],',');

write(outffle,MsgSentMatrix[3,13],7);

write(outffle,MsgAveWaitMatrix[3,13] :5:3,7);

write(outfile,CountMatrix[3,13],',');

write(outfile,MsgSentMatrix[3,14],*;);

write(outffleJ\lsgAveWaitMatrix[3,14]:5:3,7);

write(outfile,CountMatrix[3,14],',');

write(outfile,MsgSentMatrix[4,1],',');

write(outfile,MsgAveWaitMatrix[4,1] :5:3,',');

write(outfile,CountMatrix[4, l],',1);

84

write(outfUe,MsgSentMatrix[4,2],7);

write(outffle,MsgAveWaitMatrix[4,2]:5:3,7);

write(outiiLe,CounMatrix[4,2],7);

write(outfile,MsgSentMatrix[4,3],', ');

write(outfile,MsgAveWaitMatrix[4,3]:5:3,',');

write(outfile,CountMatrix[4,3],',');

write(outfUe,MsgSentMatrix[4,4],7);

write(outffle,MsgAveWaitMatrix[4,4]:5:3,7);

write(outfile,CountMatrix[4,4],',');

write(outfile,MsgSentMatrix[4,5],',');

write(outfile,MsgAveWaitMatrix[4,5]:5:3,,,,);

write(outfile, CountMatrix [4,5],',');

write(outffle,MsgSentMatrix[4,6],7);

writeCoutfile.MsgAveWaitMatrixH^lrS^,*,');

write(outfüe,CountMatrix[4,6],7);

write(outfile,MsgSentMatrix[4,7],',');

write(outfile,MsgAveWaitMatrix[4,7]:5:3,',');

write(outfile, CountMatrix[4,7],',');

write(outfüe,MsgSentMatrix[4,8],7);

write(outffle,MsgAveWaitMatrix[4,8]:5:3,7);

write(outfile,CountMatrix[4,8],',');

write(out£Qe,MsgSentMatrix[4,9],',');

write(outfile,MsgAveWaitMatrix[4,9]:5:3,',');

write(outfile,CountMatrix[4,9],',*);

write(outfile,MsgSentMatrix[4,10],',');

write(outfile,MsgAveWaitMatrix[4,10]:5:3,*,');

write(outfile,CountMatrix[4,10],',');

write(outfile,MsgSentMatrix[4,11],',');

85

write(outffle,MsgAveWaitMatrix[4,11]:5:3,7);

write(outfile,CountMatrix[4,11],',');

write(outfile,MsgSentMatrix[4,12],',');

write(outfile,MsgAveWaitMatrix[4,12]:5:3,7);

write(outfile,CountMatrix[4,12],',');

write(outfile,MsgSentMatrix[4,13],',');

write(outfile,MsgAveWaitMatrix[4,13] :5:3,7);

write(outfile,CountMatrix[4,13],*,');

write(outfile,MsgSentMatrix[4,14],7);

write(outfile,MsgAveWaitMatrix[4,14]:5:3,',');

write(outfile,CountMatrix[4,14],',');

write(outfUe,MsgSentMatrix[4,15],7);

write(outfile,MsgAveWaitMatrix[4,15] :5:3,',');

writeln(outfUe,CountMatrix[4,15],7);

end; {Prioritize}

end. {Thesis2c}

86

APPENDIX C: DATA RESULTS

A. RUN ONE

MTB > Retrieve 'FINAL10.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL10.WK1
No matching ranges; using default conversion.
MTB > AOVOneway T 'V.

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
I
V

DF SS MS
1 0.137344 0.137344

98 0.025620 0.000261
99 0.162964

F
525.37

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

N
50
50

MEAN
0.21586
0.14174

STDEV
0.02059
0.00995

POOLED STDEV = 0.01617
MTB >#pullv pull
MTB > AOVOneway 'O' 'AB*.

0.150
--+
0.175

(*-)

-+ ■
0.200

-+

-+
0.225

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
O
AB

DF SS MS
1 0.156658 0.156658

98 0.028861 0.000295
99 0.185519

F
531.94

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

N
50
50

MEAN
0.21468
0.13552

STDEV
0.02214
0.00993

POOLED STDEV = 0.01716
MTB > #push v push
MTB > AOVOneway cl8 c31.

-+-

(-*-)
—+
0.150

--+ ■

0.175

(•*■)

.+
0.200

87

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.119094 0.119094 449.20 0.000
ERROR 98 0.025982 0.000265
TOTAL 99 0.145077

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV —+ + + +—
R 50 0.21708 0.02009 (-*-)
AE 50 0.14806 0.01126 (-*-)

—+ + + +...
POOLED STDEV = 0.01628 0.150 0.175 0.200 0.225
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8.

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.000144 0.000144 0.32 0.572
ERROR 98 0.043803 0.000447
TOTAL 99 0.043947

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.21468 0.02214 (*)
R 50 0.21708 0.02009 (*)

 + + +
POOLED STDEV = 0.02114 0.2120 0.2160 0.2200
MTB > #puU v push alg2
MTB > AOVOneway c28 c31 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.003931 0.003931 34.89 0.000
ERROR 98 0.011041 0.000113
TOTAL 99 0.014973

INDIVIDUAL 95 PCT CIS FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + + +-
AB 50 0.13552 0.00993 (*)
AE 50 0.14806 0.01126 (*)

 + + + +.

88

POOLED STDEV= 0.01061

MTB > nooutfile

0.1350 0.1400 0.1450 0.1500

B. RUN TWO

MTB > Retrieve 'FINALll-WKl';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL11.WK1
No matching ranges; using default conversion.
MTB > #ave algl v ave alg2
MTB > AOVOneway c9 c22 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 1.30531 1.30531 159.07 0.000
ERROR 98 0.80417 0.00821
TOTAL 99 2.10948

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV —+ + + +—
I 50 0.55480 0.11511 (--*—)
V 50 0.32630 0.05622 (-*--)

—+ + + +—
POOLED STDEV= 0.09059 0.320 0.400 0.480 0.560
MTB >#pullv pull
MTB > AOVOneway cl5 c28

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
O
AB

DF SS
1 1.78009

98 0.77626
99 2.55635

MS
1.78009
0.00792

F
224.73

P
0.000

N
50
50

MEAN
0.55638
0.28954

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV —+ + + +--
0.11710 (--*-)
0.04614(-*-)

—-+ + + +--

89

POOLED STDEV= 0.08900
MTB > #push v push
MTB > AOVOneway cl8 c31 .

ANALYSIS OF VARIANCE

0.30 0.40 0.50 0.60

SOURCE
FACTOR
ERROR
TOTAL

LEVEL
R
AE

DF SS
1 0.90573

98 0.88238
99 1.78812

MS
0.90573
0.00900

F
100.59

P
0.000

N
50
50

MEAN
0.55314
0.36280

STDEV
0.11493
0.06928

POOLED STDEV = 0.09489
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8

INDIVIDUAL 95 PCT CIS FOR MEAN
BASED ON POOLED STDEV
--+ + + +----

--+ + + +—-
0.350 0.420 0.490 0.560

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.0003 0.0003 0.02 0.889
ERROR 98 1.3192 0.0135
TOTAL 99 1.3195

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.5564 0.1171 (*)
R 50 0.5531 0.1149 (*)

 + + +
POOLED STDEV = 0.1160 0.540 0.560 0.580
MTB > #puU v push alg2
MTB > AOVOneway c28 c31 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F P
FACTOR 1 0.13418 0.13418 38.74 0.000
ERROR 98 0.33945 0.00346
TOTAL 99 0.47363

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +-

90

AB
AE

50
50

0.28954
0.36280

0.04614
0.06928

(*--)

POOLED STDEV = 0.05885
MTB > nooutfile

 +—
0.300

—-+ +
0.330 0.360

C. RUN THREE

MTB > Retrieve 'FINAL12.WK1«;
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL12.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
I
V

DF
1

98
99

N
50
50

ss
7.6602
6.6437

14.3039

MEAN
1.1879
0.6344

MS
7.6602
0.0678

F
112.99

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV --+ + + +—-
0.3025 (--*—)
0.2099 (—*--)

--+ + + +-—
POOLED STDEV = 0.2604
MTB >#pullv pull
MTB > AOVOneway cl5 c28

0.60 0.80 1.00 1.20

ANALYSIS OF VARIANCE
SOURCE DF
FACTOR
ERROR
TOTAL

LEVEL
O

1
98
99

N
50

SS
11.1356
5.3744

16.5100

MEAN
1.1913

MS
11.1356
0.0548

F p
203.05 0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV «+ + + +-—
0.3044 (--*-)

91

AB 50 0.5239 0.1306 (--*--)
--+

POOLED STDEV= 0.2342 0.50
MTB > #push v push
MTB > AOVOneway cl8 c31.

0.75 1.00 1.25

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
R
AE

DF
1

98
99

N
50
50

ss
4.8316
8.8275

13.6591

MEAN
1.1845
0.7449

MS
4.8316
0.0901

F
53.64

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV + + +
0.3028 (...*...)
0.2975 (—*—)
 + + +

0.80 1.00 1.20 POOLED STDEV = 0.3001
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.0012 0.0012 0.01 0.911
ERROR 98 9.0308 0.0922
TOTAL 99 9.0319

INDD7IDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV -+ + + +---
O 50 1.1913 0.3044 (*)
R 50 1.1845 0.3028 (*)

-+ + + +
POOLED STDEV = 0.3036 1.100 1.150 1.200 1.250
MTB > #puU v push alg2
MTB > AOVOneway c28 c31 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS
FACTOR 1 1.2208 1.2208
ERROR 98 5.1711 0.0528

F p
23.14 0.000

92

TOTAL 99 6.3919

LEVEL
AB
AE

N
50
50

MEAN
0.5239
0.7449

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV —--+ + + +-
0.1306
0.2975

POOLED STDEV = 0.2297
MTB > nooutfile

(-

0.50

-)

 +--
0.60

.—+..
0.70

)
....+.
0.80

D. RUN FOUR

MTB > Retrieve 'FINAL13.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FTNAL13.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
I
V

DF SS MS F p
10.0042380 0.0042380 2993.55 0.000

98 0.0001387 0.0000014
99 0.0043768

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

N MEAN STDEV + + +
50 0.038660 0.001479 (*
50 0.025640 0.000802(*)

 + + +
POOLED STDEV = 0.001190 0.0280 0.0320 0.0360
MTB >#pullvpull
MTB > AOVOneway cl5 c28 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 10.0054023 0.0054023 3320.08 0.000
ERROR 98 0.0001595 0.0000016

93

TOTAL 99 0.0055617
INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV —+ + + +—
O 50 0.038580 0.001579 (*)
AB 50 0.023880 0.000872(*

—+ + + +—
POOLED STDEV = 0.001276 0.0250 0.0300 0.0350 0.0400
MTB > #push v push
MTB > AOVOneway cl8 c31.

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 10.0037700 0.0037700 2355.02 0.000
ERROR 98 0.0001569 0.0000016
TOTAL 99 0.0039268

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + + +-
R 50 0.038680 0.001558 (*)
AE 50 0.026400 0.000881(*)

 + + + +-
POOLED STDEV = 0.001265 0.0280 0.0320 0.0360 0.0400
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 10.0000002 0.0000002 0.10 0.751
ERROR 98 0.0002411 0.0000025
TOTAL 99 0.0002413

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.038580 0.001579 (*)
R 50 0.038680 0.001558 (*)

 + + +
POOLED STDEV = 0.001568 0.03840 0.03870 0.03900
MTB > #puU v push alg2
MTB > AOVOneway c28 c31.

ANALYSIS OF VARIANCE

94

SOURCE
FACTOR
ERROR
TOTAL

LEVEL
AB
AE

DF SS MS F p
10.0001588 0.0001588 206.67 0.000

98 0.0000753 0.0000008
99 0.0002340

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

N MEAN STDEV — -+ + + +--
50 0.023880 0.000872 --*-)
50 0.026400 0.000881 (-*-)

—-+ + + +--
POOLED STDEV = 0.000876 0.0240 0.0250 0.0260 0.0270
MTB > nooutfile

E. RUN FIVE

MTB > Retrieve 'FINAL14.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL14.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
I
V

P
0.000

DF SS MS F
1 0.0379470 0.0379470 1513.58

98 0.0024570 0.0000251
99 0.0404040

INDrVTDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

N MEAN STDEV --+ + + +--
50 0.098080 0.006439 (*)
50 0.059120 0.002946 (*)

--+ + + +—-
POOLED STDEV = 0.005007 0.060 0.072 0.084 0.096

MTB >#pullv pull
MTB > AOVOneway cl5 c28

ANALYSIS OF VARIANCE

95

p
0.000

SOURCE DF SS MS F
FACTOR 1 0.0566916 0.0566916 2371.73
ERROR 98 0.0023425 0.0000239
TOTAL 99 0.0590341

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.097980 0.006454 (*)
AB 50 0.050360 0.002481(*

 + + +
POOLED STDEV = 0.004889 0.060 0.075 0.090
MTB > #push v push
MTB > AOVOneway cl8 c31.

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

P
0.000

DF SS MS F
10.0311876 0.0311876 1176.85

98 0.0025971 0.0000265
99 0.0337846

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
R 50 0.098100 0.006447 (*)
AE 50 0.062780 0.003382(*-)

 + + +
POOLED STDEV = 0.005148 0.072 0.084 0.096
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8 .

P
0.926

ANALYSIS OF VARIANCE
SOURCE DF SS MS F
FACTOR 1 0.0000004 0.0000004 0.01
ERROR 98 0.0040775 0.0000416
TOTAL 99 0.0040778

INDP7IDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +-
O 50 0.097980 0.006454(*)
R 50 0.098100 0.006447 (*)

 + + +-

96

POOLED STDEV = 0.006450
MTB > #pull v push alg2
MTB > AOVOneway c28 c31.

0.0972 0.0984 0.0996

ANALYSIS OF VARIANCE
DF SS MS F p
10.0038564 0.0038564 438.38 0.000

98 0.00086210.0000088
99 0.0047185

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

MEAN STDEV + + +
0.050360 0.002481 (-*-)
0.062780 0.003382 (-*-)

 + + +
POOLED STDEV =0.002966 0.0520 0.0560 0.0600
MTB > nooutfile

SOURCE
FACTOR
ERROR
TOTAL

LEVEL
AB
AE

N
50
50

F. RUN SIX

MTB > Retrieve 'FINAL15.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL15.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

P
0.000

ANALYSIS OF VARIANCE
SOURCE DF SS MS F
FACTOR 1 0.235128 0.235128 353.73
ERROR 98 0.065142 0.000665
TOTAL 99 0.300270

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL
I
V

N
50
50

MEAN
0.21940
0.12242

STDEV
0.03228
0.01695 (-*-)

(-*-)

97

POOLED STDEV= 0.02578
MTB >#pullv pull
MTB > AOVOneway cl5 c28

0.140 0.175 0.210

ANALYSIS OF VARIANCE
SOURCE DF SS MS
FACTOR 1 0.409856 0.409856
ERROR 98 0.055500 0.000566
TOTAL 99 0.465356

F
723.71

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV + + +
0.03210 (-*)
0.01011 (-*)
 + + +

POOLED STDEV = 0.02380 0.120 0.160 0.200
MTB > #push v push
MTB > AOVOneway cl8 c31 .

LEVEL
O
AB

N
50
50

MEAN
0.21902
0.09098

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
R
AE

SS DF
1

98
99 0.247703

MS
0.175980 0.175980
0.071723 0.000732

F
240.45

P
0.000

N
50
50

MEAN
0.21958
0.13568

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV
0.03248
0.02021

-+- -+-

(-*--)
(-*--)

POOLED STDEV = 0.02705
MTB > #pull v push algl
MTB > AOVOneway cl5 cl8

0.150
...+—
0.180

—+
0.210

98

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.00001 0.00001 0.01 0.931
ERROR 98 0.10220 0.00104
TOTAL 99 0.10221

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV -+ + + +-—
O 50 0.21902 0.03210 (*)
R 50 0.21958 0.03248 (*)

-+ + + +
POOLED STDEV = 0.03229 .2100 0.2160 0.2220 0.2280
MTB > #pull v push alg2
MTB > AOVOneway c28 c31 .

ANALYSIS OF VARIANCE
SOURCE DF SS
FACTOR 1 0.049952
ERROR 98 0.025026
TOTAL 99 0.074978

LEVEL N MEAN
AB 50 0.09098
AE 50 0.13568

MS
0.049952
0.000255

F
195.61

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV —+ + + +—
0.01011 (--*--)
0.02021 (--*--)

—+ + + +—
POOLED STDEV = 0.01598 0.090 0.105 0.120 0.135
MTB > nooutfile

G. RUN SEVEN

MTB > Retrieve *FINAL16.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL16.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

99

A

p
0.000

ANALYSIS OF VARIANCE
SOURCE DF SS MS F
FACTOR 10.0143520 0.0143520 1656.42
ERROR 98 0.0008491 0.0000087
TOTAL 99 0.0152012

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV -—+ + + +-
I 50 0.071200 0.003586 (*)
V 50 0.047240 0.002115 (*-)

—-+ + + +~
POOLED STDEV = 0.002944 0.0490 0.0560 0.0630 0.0700
MTB >#pullv pull
MTB > AOVOneway cl5 c28 .

P
0.000

ANALYSIS OF VARIANCE
SOURCE DF SS MS F
FACTOR 10.0182250 0.0182250 1934.13
ERROR 98 0.0009234 0.0000094
TOTAL 99 0.0191484

INDD7IDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + + +
O 50 0.071160 0.003825 (*)
AB 50 0.044160 0.002054 (*)

 + + + +
POOLED STDEV = 0.003070 0.0480 0.0560 0.0640 0.0720
MTB > #push v push
MTB > AOVOneway cl8 c31.

P
0.000

ANALYSIS OF VARIANCE
SOURCE DF SS MS F
FACTOR 10.0125216 0.0125216 1320.70
ERROR 98 0.0009291 0.0000095
TOTAL 99 0.0134507

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV --+ + + +
R 50 0.071140 0.003603 (-*)
AE 50 0.048760 0.002446(-*)

--+ + + +~~
POOLED STDEV = 0.003079 0.0490 0.0560 0.0630 0.0700

100

MTB > #pull v push algl
MTB > AOVOneway cl5 cl8 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 10.0000000 0.0000000 0.00 0.979
ERROR 98 0.0013527 0.0000138
TOTAL 99 0.0013527

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV --+ + + +—-
O 50 0.071160 0.003825 (*)
R 50 0.071140 0.003603 (*)

-+ + + +-—
POOLED STDEV = 0.003715 7020 0.07080 0.07140 0.07200
MTB > #pull v push alg2
MTB > AOVOneway c28 c31.

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 10.0005290 0.0005290 103.72 0.000
ERROR 98 0.0004998 0.0000051
TOTAL 99 0.0010288

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
AB 50 0.044160 0.002054 (—*—)
AE 50 0.048760 0.002446 (—*—)

 + + +
POOLED STDEV = 0.002258 0.0448 0.0464 0.0480
MTB > nooutfile

H. RUN EIGHT

MTB > Retrieve 'FINAL17.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL17.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2

101

MTB > AOVOneway c9 c22

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

DF SS MS
1 0.139428 0.139428

98 0.013468 0.000137
99 0.152895

F
1014.58

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
I 50 0.18212 0.01252 (*)
V 50 0.10744 0.01087C)

POOLED STDEV = 0.01172 0.125 0.150 0+l 75
MTB >#pullv pull
MTB > AOVOneway cl5 c28 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS
FACTOR 1 0.202140 0.202140
ERROR 98 0.011505 0.000117
TOTAL 99 0.213645

F
1721.86

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
T „Tm BASED ON POOLED STDEV
LEVEL N MEAN STDEV -+ + + +.....

O 50 0.18232 0.01349 (*)
AB 50 0.09240 0.00727 (*)

-+ + + +-
POOLED STDEV = 0.01083 0.090 0.120 0 150 0 180
MTB >#pushv push
MTB > AOVOneway c 18 c31 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

P
0.000

DF SS MS F
1 0.112225 0.112225 697.86

98 0.015760 0.000161
99 0.127985

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

102

LEVEL N MEAN
R 50 0.18194
AE 50 0.11494

STDEV -
0.01226
0.01309 (*)

-+-
(-*)

0.125
—+-— + +
0.150 0.175 0.200 POOLED STDEV = 0.01268

MTB > #pull v push algl
MTB > AOVOneway cl5 cl8

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.000004 0.000004 0.02 0.883
ERROR 98 0.016280 0.000166
TOTAL 99 0.016283

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.18232 0.01349 (*)
R 50 0.18194 0.01226 (*)

 + + +
POOLED STDEV = 0.01289 0.1800 0.1825 0.1850
MTB > #pull v push alg2
MTB > AOVOneway c28 c31 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

DF SS
1 0.012701

98 0.010985
99 0.023686

MS
0.012701
0.000112

F
113.31

P
0.000

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
AB 50 0.09240 0.00727 (--*—)
AE 50 0.11494 0.01309 (—*--)

 + + +
POOLED STDEV = 0.01059 0.0960 0.1040 0.1120
MTB > nooutfile

I. RUN NINE

MTB > Retrieve 'FINAL18.WK1';

103

SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: FINAL18.WK1
No matching ranges; using default conversion.
MTB > #ave wait algl v ave wait alg2
MTB > AOVOneway c9 c22 .

ANALYSIS OF VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

LEVEL
I
V

DF SS
1 0.97654

98 0.40996
99 1.38650

MS
0.97654
0.00418

F
233.44

P
0.000

N
50
50

MEAN
0.41586
0.21822

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV -+ + + +
0.08341 (-*~)
0.03755

POOLED STDEV = 0.06468
MTB >#pullvpull
MTB > AOVOneway cl5 c28 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS
FACTOR 1 1.54331 1.54331
ERROR 98 0.38198 0.00390
TOTAL 99 1.92528

0.210
—+
0.280

..+
0.350 0.420

F
395.95

P
0.000

LEVEL
O
AB

N
50
50

MEAN
0.41618
0.16772

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV
0.08447
0.02570

POOLED STDEV = 0.06243
MTB > #push v push
MTB > AOVOneway cl8 c31 .

ANALYSIS OF VARIANCE
SOURCE DF SS MS
FACTOR 1 0.74184 0.74184
ERROR 98 0.43739 0.00446
TOTAL 99 1.17922

0.160

(-*-)

—+
0.240

--+ ■
0.320 0.400

F p
166.21 0.000

104

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

STDEV —+ + + +—
0.08333 (--*--)
0.04453 (---*-)

—+ + + +—
POOLED STDEV = 0.06681 0.240 0.300 0.360 0.420
MTB > #pull v push algl
MTB > AOVOneway c!5 c!8 .

LEVEL N MEAN
R 50 0.41584
AE 50 0.24358

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.00000 0.00000 0.00 0.984
ERROR 98 0.68982 0.00704
TOTAL 99 0.68983

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
O 50 0.41618 0.08447 (*)
R 50 0.41584 0.08333 (*)

 + + +
POOLED STDEV = 0.08390 0.405 0.420 0.435
MTB > #puU v push alg2
MTB > AOVOneway c28 c31.

ANALYSIS OF VARIANCE
SOURCE DF SS MS F p
FACTOR 1 0.14387 0.14387 108.84 0.000
ERROR 98 0.12954 0.00132
TOTAL 99 0.27341

INDIVIDUAL 95 PCT CI'S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV + + +
AB 50 0.16772 0.02570 (--*--)
AE 50 0.24358 0.04453 (--*—)

 + + +
POOLED STDEV = 0.03636 0.180 0.210 0.240
MTB > nooutfile

105

J. FLASH PRECEDENCE COMPARISON

RUN ONE
MTB > TwoSample 95.0 C3 C6;
SUBO Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.06971 0.00218 0.00031
C6 50 0.3236 0.0564 0.0080

95 PCT CI FOR MU C3 - MU C6: (-0.26990, -0.2378)

TTEST MU C3 = MU C6 (VS NE): T= -31.79 P=0.0000 DF= 49

MTB > nooutfile

RUN TWO
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.05348 0.00138 0.00019
C6 50 0.1387 0.0113 0.0016

95 PCT CI FOR MU C3 - MU C6: (-0.08845, -0.0820)

TTEST MU C3 = MU C6 (VS NE): T= -53.03 P=0.0000 DF= 50

MTB > nooutfile

RUN THREE
MTB > Retrieve '12FLASH.WKP;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 12FLASH.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save *12FLASH.WK1':

106

SUBO Lotus.
12FLASH.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 12FLASH.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.07918 0.00229 0.00032
C6 50 0.634 0.223 0.032

95 PCT CI FOR MU C3 - MU C6: (-0.61825, -0.491)

TTEST MU C3 = MU C6 (VS NE): T= -17.60 P=0.0000 DF= 49

MTB > nooutfile

RUN FOUR
MTB > Retrieve '13FLASH.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 13FLASH.WK1
No matching ranges; using default conversion.
MTB>letc3=cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.009755 0.000142 0.000020
C6 50 0.025551 0.000903 0.00013

95 PCT CI FOR MU C3 - MU C6: (-0.016056, -0.01554)

TTEST MU C3 = MU C6 (VS NE): T= -122.21 P=0.0000 DF= 51

MTB > Save '13FLASH.WKr;
SUBC> Lotus.
13FLASH.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

107

LOTUS 1-2-3 file: 13FLASH.WK1
MTB > nooutfile

RUN FIVE
MTB > Retrieve *14FLASH.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 14FLASH.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.012698 0.000171 0.000024
C6 50 0.05893 0.00360 0.00051

95 PCT CI FOR MU C3 - MU C6: (-0.047259, -0.04521)

TTEST MU C3 = MU C6 (VS NE): T= -90.78 P=0.0000 DF= 49

MTB > Save 'UFLASH.WKl';
SUBO Lotus.
UFLASH.WKl already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 14FLASH.WK1
MTB > nooutfile

RUN SIX
MTB > Save '15FLASH.WKr;
SUBC> Lotus.
15FLASH.WK1 already exists.
MTB > Retrieve '15FLASH.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 15FLASH.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;

108

SUBO Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.014321 0.000201 0.000028
C6 50 0.1200 0.0165 0.0023

95 PCT CI FOR MU C3 - MU C6: (-0.110393, -0.1010)

TTEST MU C3 = MU C6 (VS NE): T= -45.38 P=0.0000 DF= 49

MTB > nooutfile

RUN SEVEN
MTB > Retrieve '16FLASH.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 16FLASH.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;
SUBO Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.017832 0.000264 0.000037
C6 50 0.04686 0.00233 0.00033

95 PCT CI FOR MU C3 - MU C6: (-0.029693, -0.02836)

TTEST MU C3 = MU C6 (VS NE): T= -87.47 P=0.0000 DF= 50

MTB > nooutfile

RUN EIGHT
MTB > Retrieve '17FLASH.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 17FLASH.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2

109

MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.023252 0.000357 0.000051
C6 50 0.1055 0.0120 0.0017

95 PCT CI FOR MU C3 - MU C6: (-0.085699, -0.0789)

TTEST MU C3 = MU C6 (VS NE): T= -48.60 P=0.0000 DF= 49

MTB > nooutfile

RUN NINE
MTB > Retrieve '18FLASH.WK1*;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 18FLASH.WK1
MTB>letc3=cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 'C* *F';
SUBC> Alternative 0.

TWOSAMPLE T FOR C VS F
N MEAN STDEV SEMEAN

C 50 0.023252 0.000357 0.000051
F 50 0.1055 0.0120 0.0017

95 PCT CI FOR MU C - MU F: (-0.085699,-0.0789)

TTEST MU C = MU F (VS NE): T= -48.60 P=0.0000 DF= 49

MTB > nooutfile

K. IMMEDIATE PRECEDENCE COMPARISON

RUN ONE
MTB > Retrieve 'lOIMM.WKl';

no

SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 10IMM.WK1
No matching ranges; using default conversion.
MTB>letc3=cl/c2
MTB > let c6 = c4/c5
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.08853 0.00359 0.00051
C6 50 0.1394 0.0110 0.0016

95 PCT CI FOR MU C3 - MU C6: (-0.05414, -0.0476)

TTEST MU C3 = MU C6 (VS NE): T= -31.16 P=0.0000 DF= 59

MTB > Save 'lOlMM.WKr;
SUBC> Lotus.
10IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 10IMM.WK1
MTB > nooutfile

RUN TWO
MTB > Retrieve 'lUMM-WKl';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 11IMM.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '1HMM.WK1';
SUBC> Lotus.
11IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 11IMM.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6

in

N MEAN STDEV SEMEAN
C3 50 0.12734 0.00591 0.00084
C6 50 0.3225 0.0573 0.0081

95 PCT CI FOR MU C3 - MU C6: (-0.21151, -0.1788)

TTESTMUC3=MUC6(VSNE):T=-23.97 P=0.0000 DF= 50

MTB > nooutfile

RUN THREE
MTB > Retrieve '12IMM.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 12IMM.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '12IMM.WKr;
SUBO Lotus.
12IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 12IMM.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.15057 0.00562 0.00079
C6 50 0.635 0.228 0.032

95 PCT CI FOR MU C3 - MU C6: (-0.54965, -0.420)

TTEST MU C3 = MU C6 (VS NE): T= -15.01 P=0.0000 DF= 49

MTB > nooutfile

RUN FOUR
MTB > Retrieve *13IMM.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 13IMM.WK1

112

No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '13IMM.WKr;
SUBO Lotus.
13IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 13IMM.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.016152 0.000282 0.000040
C6 50 0.025661 0.000873 0.00012

95 PCT CI FOR MU C3 - MU C6: (-0.009769, -0.00925)

TTEST MU C3 = MU C6 (VS NE): T= -73.33 P=0.0000 DF= 59

MTB > nooutfile

RUN FIVE
MTB > Retrieve '14IMM.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 14IMM.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '14IMM.WKr;
SUBC> Lotus.
14IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 14IMM.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.023166 0.000533 0.000075
C6 50 0.05900 0.00364 0.00051

113

95 PCT CI FOR MU C3 - MU C6: (-0.036876, -0.03479)

TTESTMUC3=MUC6(VSNE):T=-68.84 P=0.0000 DF= 51

MTB > nooutfile

RUN SIX
MTB > Retrieve '15IMM.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 ffle: 15IMM.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save 'lörMMWEl';
SUBO Lotus.
15IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 ffle: 15IMM.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.027286 0.000586 0.000083
C6 50 0.1220 0.0180 0.0025

95 PCT CI FOR MU C3 - MU C6: (-0.099882, -0.0896)

TTESTMUC3=MUC6(VSNE):T=-37.18 P=0.0000 DF= 49

MTB > nooutfile

RUN SEVEN
MTB > Retrieve '16IMM.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 ffle: 16IMM.WK1
No matching ranges; using default conversion
MTB>letc3=cl/c2
MTB > let c6 = c4/c5

114

MTB > Save 'lGIMM-WKl*;
SUBO Lotus.
16IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 16IMM.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.029553 0.000643 0.000091
C6 50 0.04716 0.00254 0.00036

95 PCT CI FOR MU C3 - MU C6: (-0.018348, -0.01686)

TTEST MU C3 = MU C6 (VS NE): T= -47.52 P=0.0000 DF= 55

MTB > nooutfile

RUN EIGHT
MTB > Retrieve ,17IMM.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 17IMM.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '17IMM.WKr;
SUBC> Lotus.
17IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 17IMM.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.04239 0.00105 0.00015
C6 50 0.1074 0.0122 0.0017

95 PCT CI FOR MU C3 - MU C6: (-0.06849, -0.0615)

115

TTEST MU C3 = MU C6 (VS NE): T= -37.59 P=0.0000 DF= 49

MTB > nooutfile

RUN NINE
MTB > Retrieve '18IMM.WKr;
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 18IMM.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB>letc6 = c4/c5
MTB > Save '18IMM.WKr;
SUBC> Lotus.
18IMM.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 18IMM.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.05044 0.00124 0.00018
C6 50 0.2155 0.0408 0.0058

95 PCT CI FOR MU C3 - MU C6: (-0.17662, -0.1534)

TTEST MU C3 = MU C6 (VS NE): T= -28.60 P=0.0000 DF= 49

MTB > nooutfile

L. PRIORITY PRECEDENCE COMPARISON

RUN ONE
MTB > Retrieve *10PRIOR.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 10PRIOR.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2

116

MTB > let c6 = c4/c5
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.1799 0.0119 0.0017
C6 50 0.1450 0.0125 0.0018

95 PCT CI FOR MU C3 - MU C6: (0.0300, 0.0397)

TTEST MU C3 = MU C6 (VS NE): T= 14.29 P=0.0000 DF= 97

MTB > Save 'lOPRIOR.WKl';
SUBO Lotus.
lOPRIOR.WKl already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 10PRIOR.WK1
MTB > nooutfile

RUN TWO
MTB > Retrieve '11PRIOR.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 11PRIOR.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save 'UPRIOR.WKr;
SUBC> Lotus.
11PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 11PRIOR.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.3048 0.0247 0.0035
C6 50 0.3277 0.0674 0.0095

95 PCT CI FOR MU C3 - MU C6: (-0.0432, -0.0026)

117

TTEST MU C3 = MU C6 (VS NE): T= -2.26 P=0.028 DF= 61

MTB > nooutfile

RUN THREE
MTB > Retrieve '12PRIOR.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 12PRIOR.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '12PRIOR.WK1';
SUBC> Lotus.
12PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 12PRIOR.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.3989 0.0346 0.0049
C6 50 0.623 0.188 0.027

95 PCT CI FOR MU C3 - MU C6: (-0.2787, -0.170)

TTEST MU C3 = MU C6 (VS NE): T= -8.29 P=0.0000 DF= 52

MTB > nooutfile

RUN FOUR
MTB > Retrieve '13PRIOR.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 13PRIOR.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '13PRIOR.WK1';
SUBC> Lotus.

118

13PRI0R.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 13PRIOR.WK1
MTB > TwoSample 95.0 c3 c6;
SUBO Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.032311 0.000905 0.00013
C6 50 0.025639 0.000970 0.00014

95 PCT CI FOR MU C3 - MU C6: (0.00630, 0.00704)

TTESTMUC3 = MUC6(VSNE):T= 35.56 P=0.0000 DF= 97

MTB > nooutfile

RUN FIVE
MTB > Retrieve *14PRIOR.WKr;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 14PRIOR.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save ,14PRIOR.WKr;
SUBC> Lotus.
14PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 14PRIOR.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.05506 0.00176 0.00025
C6 50 0.05877 0.00346 0.00049

95 PCT CI FOR MU C3 - MU C6: (-0.00481, -0.00262)

TTEST MU C3 = MU C6 (VS NE): T= -6.76 P=0.0000 DF= 72

119

MTB > nooutfile

RUN SIX
MTB > Retrieve '15PRIOR.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 15PRI0R.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '15PRIOR.WK1';
SUBO Lotus.
15PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 15PRIOR.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.07215 0.00249 0.00035
C6 50 0.1222 0.0180 0.0025

95 PCT CI FOR MU C3 - MU C6: (-0.05518, -0.0449)

TTESTMUC3 = MUC6(VSNE):T=-19.50 P=0.0000 DF= 50

MTB > nooutfile

RUN SEVEN
MTB > Retrieve '16PRIOR.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 16PRIOR.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '16PRIOR.WKr;
SUBC> Lotus.
16PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 16PRIOR.WK1

120

MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.05925 0.00182 0.00026
C6 50 0.04708 0.00238 0.00034

95 PCT CI FOR MU C3 - MU C6: (0.01133, 0.01302)

TTEST MU C3 = MU C6 (VS NE): T= 28.75 P=0.0000 DF= 91

MTB > nooutfile

RUN EIGHT
MTB > Retrieve '17PRIOR.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MTNITAB

LOTUS 1-2-3 file: 17PRIOR.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '17PRIOR.WKr;
SUBO Lotus.
17PRIOR.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 ffle: 17PRIOR.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.10084 0.00395 0.00056
C6 50 0.1077 0.0110 0.0016

95 PCT CI FOR MU C3 - MU C6: (-0.01013, -0.0035)

TTEST MU C3 = MU C6 (VS NE): T= -4.15 P=0.0001 DF= 61

MTB > nooutffle

121

RUN NINE
MTB > Save '18PRI0R.WK1';
SUBO Lotus.
18PRI0R.WK1 already exists.
MTB > Retrieve '18PRI0R.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 18PRI0R.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '18PRIOR.WK1';
SUBO Lotus.
18PRI0R.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 18PRIOR.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.13333 0.00567 0.00080
C6 50 0.2199 0.0373 0.0053

95 PCT CI FOR MU C3 - MU C6: (-0.09731, -0.0759)

TTESTMUC3=MUC6(VSNE):T= -16.22 P=0.0000 DF= 51

MTB > nooutfile

M. ROUTINE PRECEDENCE COMPARISON

RUN ONE
MTB > Retrieve '10ROUT.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 10ROUT.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB>letc6=c4/c5

122

MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.5438 0.0743 0.011
C6 50 0.1440 0.0133 0.0019

95 PCT CI FOR MU C3 - MU C6: (0.378, 0.4212)

TTEST MU C3 = MU C6 (VS NE): T= 37.46 P=0.0000 DF= 52

MTB > Save '10ROUT.WK1';
SUBC> Lotus.
10ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 10ROUT.WK1
MTB > nooutfile

RUN TWO
MTB > Retrieve 'llROUT.WKl';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3file: llROUT.WKl
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save 'llROUT.WKl';
SUBC> Lotus.
llROUT.WKl already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: llROUT.WKl
MTB > TwoSample 95,0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 1.725 0.453 0.064
C6 50 0.3314 0.0634 0.0090

95 PCT CI FOR MU C3 - MU C6: (1.264, 1.5233)

123

TTEST MU C3 = MU C6 (VS NE): T= 21.56 P=0.0000 DF= 50

MTB > nooutfile

RUN THREE
MTB > Retrieve '12ROUT.WK1*;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 12ROUT.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '12ROUT.WK1';
SUBC> Lotus.
12ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 12ROUT.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 4.14 1.19 0.17
C6 50 0.645 0.236 0.033

95 PCT CI FOR MU C3 - MU C6: (3.15, 3.838)

TTEST MU C3 = MU C6 (VS NE): T= 20.30 P=0.0000 DF= 52

MTB > nooutfile

RUN FOUR
MTB > Retrieve '13ROUT.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 13ROUT.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '13ROUT.WK1';
SUBC> Lotus.
13ROUT.WK1 already exists.

124

Converting MINITAB to Lotus 1-2-3 version 2 or 3
LOTUS 1-2-3 file: 13ROUT.WK1

MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.09641 0.00512 0.00072
C6 50 0.02584 0.00114 0.00016

95 PCT CI FOR MU C3 - MU C6: (0.06908, 0.07206)

TTEST MU C3 = MU C6 (VS NE): T= 95.05 P=0.0000 DF= 53

MTB > nooutfile

RUN FIVE
MTB > Retrieve '14ROUT.WK1*;
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 14ROUT.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '14ROUT.WK1';
SUBC> Lotus.
14ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 14ROUT.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.3015 0.0243 0.0034
C6 50 0.05978 0.00333 0.00047

95 PCT CI FOR MU C3 - MU C6: (0.2348, 0.24868)

TTEST MU C3 = MU C6 (VS NE): T= 69.77 P=0.0000 DF= 50

MTB > nooutfile

125

RUN SIX
MTB > Retrieve '15R0UT.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 15R0UT.WK1
No matching ranges; using default conversion.
MTB > let c3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '15ROUT.WK1';
SUBC> Lotus.
15ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 15ROUT.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SE MEAN

C3 50 0.764 0.127 0.018
C6 50 0.1255 0.0182 0.0026

95 PCT CI FOR MU C3 - MU C6: (0.602, 0.6747)

TTEST MU C3 = MU C6 (VS NE): T= 35.21 P=0.0000 DF= 51

MTB > nooutfile

RUN SEVEN
MTB > Retrieve '16ROUT.WK1';
SUBC> Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 16ROUT.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '16ROUT.WK1';
SUBC> Lotus.
16ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 16ROUT.WK1
MTB > TwoSample 95.0 c3 c6;
SUBC> Alternative 0.

126

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.1777 0.0126 0.0018
C6 50 0.04769 0.00252 0.00036

95 PCT CI FOR MU C3 - MU C6: (0.1263, 0.13361)

TTEST MU C3 = MU C6 (VS NE): T= 71.64 P=0.0000 DF= 52

MTB > nooutfile

RUN EIGHT
MTB > Retrieve '17ROUT.WK1';
SUBO Lotus.
Converting Lotus 1-2-3 v2/v3 to MINITAB

LOTUS 1-2-3 file: 17ROUT.WK1
No matching ranges; using default conversion.
MTB>letc3 = cl/c2
MTB > let c6 = c4/c5
MTB > Save '17ROUT.WK1';
SUBC> Lotus.
17ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 17ROUT.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 0.5619 0.0469 0.0066
C6 50 0.1091 0.0128 0.0018

95 PCT CI FOR MU C3 - MU C6: (0.4390, 0.4666)

TTEST MU C3 = MU C6 (VS NE): T= 65.81 P=0.0000 DF= 56

MTB > nooutfile

RUN NINE
MTB > Retrieve '18ROUT.WK1';
SUBC> Lotus.

127

Converting Lotus 1-2-3 v2/v3 to MINITAB
LOTUS 1-2-3 file: 18ROUT.WK1

No matching ranges; using default conversion.
MTB>letc3=cl/c2
MTB > let c6 = c4/c5
MTB > Save '18ROUT.WKr;

SUBC> Lotus.
18ROUT.WK1 already exists.
Converting MINITAB to Lotus 1-2-3 version 2 or 3

LOTUS 1-2-3 file: 18ROUT.WK1
MTB > TwoSample 95.0 C3 C6;
SUBC> Alternative 0.

TWOSAMPLE T FOR C3 VS C6
N MEAN STDEV SEMEAN

C3 50 1.456 0.333 0.047
C6 50 0.2233 0.0408 0.0058

95 PCT CI FOR MU C3 - MU C6: (1.137, 1.3276)

TTESTMUC3 = MUC6(VSNE):T= 25.98 P=0.0000 DF= 50

MTB > nooutfile

128

LIST OF REFERENCES

Groff, G.K., and Muth, J.F., Operations Management, Richard D. Irwin, Inc.,
1972.

Rand, A.L., The Communication Support System (CSS) and Its Planning and
Management upon Implementation, Master's Thesis, Naval Postgraduate
School, Monterey, CA, March 1992.

Sproase, J., "User Pull-White Paper", Naval Command, Control and Ocean
Surveillance Command (NCCOSC) Corporate Initiatives Group working
paper, 16 November 1993.

U.S. Department of the Navy, Director, Space and Electronic Warfare, The
Copernicus Architecture, Government Printing Office, Washington, DC, 1991.

U.S. Department of the Navy, Director, Space-Command and Control-
Information Warfare, Copernicus...Forward, C4IFor The 21st Century,
Government Printing Office, Washington, DC, 1995.

U.S. Department of the Navy, Commander, Space and Naval Warfare
Systems Command, Joint Maritime Communications System Overview,
Commander, Space and Naval Warfare Systems Command, Washington, DC,
1997.

129

130

BIBLIOGRAPHY

Burns, P.J., I Hate EXCEL 5, Que Corporation, 1993.

Cooper, D., Oh! Pascal!, 3rd ed., W.W. Norton and Company, 1992.

MINITAB Reference Manual, Minitab, Inc, 1991.

Ryan, B.F., Joiner, B.L., and Ryan, T.A., MINITAB Handbook, 2nd ed.,
Duxbury Press, 1992.

Walpole, R.E., and Myers, R.H., Probability and Statistics for Engineers and
Scientists, 4th ed., Macmillan Publishing Company, 1989.

Weiss, N.A., and Hassett, M.J., Introductory Statistics, 3rd ed., Addison-
Wesley Publishing Company, 1991.

131

132

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Professor Michael G. Sovereign Code CC/SV 1
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Orrin E. Marvel Code CC/MA 1
Naval Postgraduate School
Monterey, CA 93943-5000

5 Lieutenant Commander Christopher H. Halton 1
Commander
Destroyer Squadron 20
FPO AE 09506-4719

133

